Random Close Packing as a Dynamical Phase Transition

Phys Rev Lett. 2021 Jul 16;127(3):038002. doi: 10.1103/PhysRevLett.127.038002.

Abstract

Sphere packing is an ancient problem. The densest packing is known to be a face-centered cubic (FCC) crystal, with space-filling fraction ϕ_{FCC}=π/sqrt[18]≈0.74. The densest "random packing," random close packing (RCP), is yet ill defined, although many experiments and simulations agree on a value ϕ_{RCP}≈0.64. We introduce a simple absorbing-state model, biased random organization (BRO), which exhibits a Manna class dynamical phase transition between absorbing and active states that has as its densest critical point ϕ_{c_{max}}≈0.64≈ϕ_{RCP} and, like other Manna class models, is hyperuniform at criticality. The configurations we obtain from BRO appear to be structurally identical to RCP configurations from other protocols. This leads us to conjecture that the highest-density absorbing state for an isotropic biased random organization model produces an ensemble of configurations that characterizes the state conventionally known as RCP.