Multi-band on-chip photonic spin Hall effect and selective excitation of whispering gallery modes with metasurface-integrated microcavity

Opt Lett. 2021 Aug 1;46(15):3528-3531. doi: 10.1364/OL.429940.

Abstract

We propose an approach to realize a multi-band on-chip photonic spin Hall effect and selective excitation of whispering gallery modes (WGMs) by integrating metasurfaces with microcavities. Free-space circularly polarized light with opposite spin angular momentum can effectively excite WGMs with opposite propagation directions at fixed wavelengths. Moreover, the different WGMs with different propagation directions and polarizations can be selectively excited by manipulating the number of antennas. We demonstrate that the optical properties (i.e., coupling efficiency, peak positions, and peak widths) of the proposed metasurface-integrated microcavities can be easily tailored by adjusting different geometric parameters. This study enables the realization of chiral microcavities with exciting novel functionalities, which may provide a further step in the development of photonic integrated circuits, optical sensing, and chiral optics.