Ru-Se Coordination: A New Dynamic Bond for Visible-Light-Responsive Materials

J Am Chem Soc. 2021 Aug 18;143(32):12736-12744. doi: 10.1021/jacs.1c05648. Epub 2021 Aug 4.

Abstract

Photodynamic bonds are stable in the dark and can reversibly dissociate/form under light irradiation. Photodynamic bonds are promising building blocks for responsive or healable materials, photoactivated drugs, nanocarriers, extracellular matrices, etc. However, reactive intermediates from photodynamic bonds usually lead to side reactions, which limit the use of photodynamic bonds. Here, we report that the Ru-Se coordination bond is a new photodynamic bond that reversibly dissociates under mild visible-light-irradiation conditions. We observed that Ru-Se bonds form via the coordination of a selenoether ligand with [Ru(tpy)(biq)(H2O)]Cl2 (tpy = 2,2':6',2″-terpyridine, biq = 2,2'-biquinoline) in the dark, while the Ru-Se bond reversibly dissociates under visible-light irradiation. No side reaction is detected in the formation and dissociation of Ru-Se bonds. To demonstrate that the Ru-Se bond is applicable to different operating environments, we prepared photoresponsive amphiphiles, surfaces, and polymer gels using Ru-Se bonds. The amphiphiles with Ru-Se bonds showed reversible morphological transitions between spherical micelles and bowl-shaped assemblies for dark/light irradiation cycles. The surfaces modified with Ru-Se-bond-containing compounds showed photoswitchable wettability. Polymer gels with Ru-Se cross-links underwent photoinduced reversible sol-gel transitions, which can be used for reshaping and healing. Our work demonstrates that the Ru-Se bond is a new type of dynamic bond, which can be used for constructing responsive, reprocessable, switchable, and healable materials that work in a variety of environments.

Publication types

  • Research Support, Non-U.S. Gov't