A Precision Medicine Approach to Optimize Modulator Therapy for Rare CFTR Folding Mutants

J Pers Med. 2021 Jul 7;11(7):643. doi: 10.3390/jpm11070643.

Abstract

Trikafta, a triple-combination drug, consisting of folding correctors VX-661 (tezacaftor), VX-445 (elexacaftor) and the gating potentiator VX-770 (ivacaftor) provided unprecedented clinical benefits for patients with the most common cystic fibrosis (CF) mutation, F508del. Trikafta indications were recently expanded to additional 177 mutations in the CF transmembrane conductance regulator (CFTR). To minimize life-long pharmacological and financial burden of drug administration, if possible, we determined the necessary and sufficient modulator combination that can achieve maximal benefit in preclinical setting for selected mutants. To this end, the biochemical and functional rescue of single corrector-responsive rare mutants were investigated in a bronchial epithelial cell line and patient-derived human primary nasal epithelia (HNE), respectively. The plasma membrane density of P67L-, L206W- or S549R-CFTR corrected by VX-661 or other type I correctors was moderately increased by VX-445. Short-circuit current measurements of HNE, however, uncovered that correction comparable to Trikafta was achieved for S549R-CFTR by VX-661 + VX-770 and for P67L- and L206W-CFTR by the VX-661 + VX-445 combination. Thus, introduction of a third modulator may not provide additional benefit for patients with a subset of rare CFTR missense mutations. These results also underscore that HNE, as a precision medicine model, enable the optimization of mutation-specific modulator combinations to maximize their efficacy and minimize life-long drug exposure of CF patients.

Keywords: CFTR missense mutations; CFTR modulator combination; cystic fibrosis; cystic fibrosis transmembrane conducatance regulator (CFTR); precision medicine; primary human nasal epithelia.