Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021:30:6997-7011.
doi: 10.1109/TIP.2021.3101917.

Embedding Regularizer Learning for Multi-View Semi-Supervised Classification

Embedding Regularizer Learning for Multi-View Semi-Supervised Classification

Aiping Huang et al. IEEE Trans Image Process. 2021.

Abstract

Classification remains challenging when confronted with the existence of multi-view data with limited labels. In this paper, we propose an embedding regularizer learning scheme for multi-view semi-supervised classification (ERL-MVSC). The proposed framework integrates diversity, sparsity and consensus to dexterously manipulate multi-view data with limited labels. To encourage diversity, ERL-MVSC recasts a linear regression model to derive view-specific embedding regularizers and automatically determines their weights. This is able to tactfully incorporate complementary information of different views. To ensure sparsity, ERL-MVSC imposes l2,1 -norm on a fused embedding regularizer to exploit the sparse local structure of samples, thereby conveying valuable classification information and enhancing the robustness against noise/outliers. To enhance consensus, ERL-MVSC learns a shared predicted label matrix, which serves as the comment target of multi-view classification. With these techniques, we formulate ERL-MVSC as a joint optimization problem of an embedding regularizer and a predicted label matrix, which can be solved by a coordinate descent method. Extensive experimental results on real-world datasets demonstrate the effectiveness and superiority of the proposed algorithm.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources