Bayesian Calibration of Electrophysiology Models Using Restitution Curve Emulators
- PMID: 34366883
- PMCID: PMC8339909
- DOI: 10.3389/fphys.2021.693015
Bayesian Calibration of Electrophysiology Models Using Restitution Curve Emulators
Erratum in
-
Corrigendum: Bayesian Calibration of Electrophysiology Models Using Restitution Curve Emulators.Front Physiol. 2021 Oct 4;12:765622. doi: 10.3389/fphys.2021.765622. eCollection 2021. Front Physiol. 2021. PMID: 34671278 Free PMC article.
Abstract
Calibration of cardiac electrophysiology models is a fundamental aspect of model personalization for predicting the outcomes of cardiac therapies, simulation testing of device performance for a range of phenotypes, and for fundamental research into cardiac function. Restitution curves provide information on tissue function and can be measured using clinically feasible measurement protocols. We introduce novel "restitution curve emulators" as probabilistic models for performing model exploration, sensitivity analysis, and Bayesian calibration to noisy data. These emulators are built by decomposing restitution curves using principal component analysis and modeling the resulting coordinates with respect to model parameters using Gaussian processes. Restitution curve emulators can be used to study parameter identifiability via sensitivity analysis of restitution curve components and rapid inference of the posterior distribution of model parameters given noisy measurements. Posterior uncertainty about parameters is critical for making predictions from calibrated models, since many parameter settings can be consistent with measured data and yet produce very different model behaviors under conditions not effectively probed by the measurement protocols. Restitution curve emulators are therefore promising probabilistic tools for calibrating electrophysiology models.
Keywords: Bayesian; Gaussian processes; calibration; cardiology; electrophysiology; emulation; restitution; sensitivity analysis.
Copyright © 2021 Coveney, Corrado, Oakley, Wilkinson, Niederer and Clayton.
Conflict of interest statement
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Figures
Similar articles
-
Corrigendum: Bayesian Calibration of Electrophysiology Models Using Restitution Curve Emulators.Front Physiol. 2021 Oct 4;12:765622. doi: 10.3389/fphys.2021.765622. eCollection 2021. Front Physiol. 2021. PMID: 34671278 Free PMC article.
-
Emulator-Based Bayesian Calibration of the CISNET Colorectal Cancer Models.Med Decis Making. 2024 Jul;44(5):543-553. doi: 10.1177/0272989X241255618. Epub 2024 Jun 10. Med Decis Making. 2024. PMID: 38858832 Free PMC article.
-
Emulator-based Bayesian calibration of the CISNET colorectal cancer models.medRxiv [Preprint]. 2024 Feb 5:2023.02.27.23286525. doi: 10.1101/2023.02.27.23286525. medRxiv. 2024. Update in: Med Decis Making. 2024 Jul;44(5):543-553. doi: 10.1177/0272989X241255618 PMID: 36909607 Free PMC article. Updated. Preprint.
-
Sensitivity and Uncertainty Analysis of Two Human Atrial Cardiac Cell Models Using Gaussian Process Emulators.Front Physiol. 2020 Apr 23;11:364. doi: 10.3389/fphys.2020.00364. eCollection 2020. Front Physiol. 2020. PMID: 32390867 Free PMC article.
-
Calibration of ionic and cellular cardiac electrophysiology models.Wiley Interdiscip Rev Syst Biol Med. 2020 Jul;12(4):e1482. doi: 10.1002/wsbm.1482. Epub 2020 Feb 21. Wiley Interdiscip Rev Syst Biol Med. 2020. PMID: 32084308 Free PMC article. Review.
Cited by
-
A Review of Personalised Cardiac Computational Modelling Using Electroanatomical Mapping Data.Arrhythm Electrophysiol Rev. 2024 May 20;13:e08. doi: 10.15420/aer.2023.25. eCollection 2024. Arrhythm Electrophysiol Rev. 2024. PMID: 38807744 Free PMC article. Review.
-
Credibility assessment of patient-specific computational modeling using patient-specific cardiac modeling as an exemplar.PLoS Comput Biol. 2022 Oct 10;18(10):e1010541. doi: 10.1371/journal.pcbi.1010541. eCollection 2022 Oct. PLoS Comput Biol. 2022. PMID: 36215228 Free PMC article.
-
Calibrating cardiac electrophysiology models using latent Gaussian processes on atrial manifolds.Sci Rep. 2022 Oct 4;12(1):16572. doi: 10.1038/s41598-022-20745-z. Sci Rep. 2022. PMID: 36195766 Free PMC article.
-
Neural network emulation of the human ventricular cardiomyocyte action potential for more efficient computations in pharmacological studies.Elife. 2024 Apr 10;12:RP91911. doi: 10.7554/eLife.91911. Elife. 2024. PMID: 38598284 Free PMC article.
-
Neural network emulation of the human ventricular cardiomyocyte action potential: a tool for more efficient computation in pharmacological studies.bioRxiv [Preprint]. 2023 Dec 25:2023.08.16.553497. doi: 10.1101/2023.08.16.553497. bioRxiv. 2023. Update in: Elife. 2024 Apr 10;12:RP91911. doi: 10.7554/eLife.91911 PMID: 38234850 Free PMC article. Updated. Preprint.
References
-
- Boyle P. M., Ochs A. R., Ali R. L., Paliwal N., Trayanova N. A. (2021). Characterizing the arrhythmogenic substrate in personalized models of atrial fibrillation: sensitivity to mesh resolution and pacing protocol in AF models. EP Europace 23(Suppl. 1), i3–i11. 10.1093/europace/euaa385 - DOI - PMC - PubMed
-
- Brynjarsdóttir J., O'Hagan A. (2014). Learning about physical parameters: the importance of model discrepancy. Inverse Probl. 30:114007. 10.1088/0266-5611/30/11/114007 - DOI
LinkOut - more resources
Full Text Sources
