A Study on Seizure Detection of EEG Signals Represented in 2D

Sensors (Basel). 2021 Jul 29;21(15):5145. doi: 10.3390/s21155145.

Abstract

A seizure is a neurological disorder caused by abnormal neuronal discharges in the brain, which severely reduces the quality of life of patients and often endangers their lives. Automatic seizure detection is an important research area in the treatment of seizure and is a prerequisite for seizure intervention. Deep learning has been widely used for automatic detection of seizures, and many related research works decomposed the electroencephalogram (EEG) raw signal with a time window to obtain EEG signal slices, then performed feature extraction on the slices, and represented the obtained features as input data for neural networks. There are various methods for EEG signal decomposition, feature extraction, and representation, and most of the studies have been based on fixed hardware resources for the design of the scheme, which reduces the adaptability of the scheme in different application scenarios and makes it difficult to optimize the algorithms in the scheme. To address the above issues, this paper proposes a deep learning-based model for seizure detection, mainly characterized by the two-dimensional representation of EEG features and the scalability of neural networks. The model modularizes the main steps of seizure detection and improves the adaptability of the model to different hardware resource constraints, in order to increase the convenience of the algorithm optimization or the replacement of each module. The proposed model consists of five parts, and the model was tested using two epilepsy datasets separately. The experimental results showed that the proposed model has strong generality and good classification accuracy for seizure detection.

Keywords: EEG feature representation; EfficientNet neural network; epilepsy; seizure detection.

MeSH terms

  • Algorithms
  • Electroencephalography
  • Epilepsy*
  • Humans
  • Quality of Life*
  • Seizures / diagnosis
  • Signal Processing, Computer-Assisted