The two-dimensional spatial structure of simple receptive fields in cat striate cortex

J Neurophysiol. 1987 Dec;58(6):1187-211. doi: 10.1152/jn.1987.58.6.1187.


1. A reverse correlation (6, 8, 25, 35) method is developed that allows quantitative determination of visual receptive-field structure in two spatial dimensions. This method is applied to simple cells in the cat striate cortex. 2. It is demonstrated that the reverse correlation method yields results with several desirable properties, including convergence and reproducibility independent of modest changes in stimulus parameters. 3. In contrast to results obtained with moving stimuli, we find that the bright and dark excitatory subregions in simple receptive fields do not overlap to any great extent. This difference in results may be attributed to confounding the independent variables space and time when using moving stimuli. 4. All simple receptive fields have subregions that vary smoothly in all directions in space. There are no sharp transitions either between excitatory subregions or between subregions and the area surrounding the receptive field. 5. Simple receptive fields vary both in the number of subregions observed, in the elongation of each subregion, and in the overall elongation of the field. In contrast with results obtained using moving stimuli, we find that subregions within a given receptive field need not be the same length. 6. The hypothesis that simple receptive fields can be modeled as either even symmetric or odd symmetric about a central axis is evaluated. This hypothesis is found to be false in general. Most simple receptive fields are neither even symmetric nor odd symmetric. 7. The hypothesis that simple receptive fields can be modeled as the product of a width response profile and an orthogonal length response profile (Cartesian separability) is evaluated. This hypothesis is found to be true for only approximately 50% of the cells in our sample.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cats / physiology*
  • Darkness
  • Evoked Potentials, Visual
  • Models, Neurological
  • Photic Stimulation
  • Visual Cortex / physiology*
  • Visual Fields*
  • Visual Perception*