Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Sep;31(9):2150038.
doi: 10.1142/S0129065721500386. Epub 2021 Aug 11.

A Hybrid-Domain Deep Learning-Based BCI For Discriminating Hand Motion Planning From EEG Sources

Affiliations

A Hybrid-Domain Deep Learning-Based BCI For Discriminating Hand Motion Planning From EEG Sources

Cosimo Ieracitano et al. Int J Neural Syst. 2021 Sep.

Abstract

In this paper, a hybrid-domain deep learning (DL)-based neural system is proposed to decode hand movement preparation phases from electroencephalographic (EEG) recordings. The system exploits information extracted from the temporal-domain and time-frequency-domain, as part of a hybrid strategy, to discriminate the temporal windows (i.e. EEG epochs) preceding hand sub-movements (open/close) and the resting state. To this end, for each EEG epoch, the associated cortical source signals in the motor cortex and the corresponding time-frequency (TF) maps are estimated via beamforming and Continuous Wavelet Transform (CWT), respectively. Two Convolutional Neural Networks (CNNs) are designed: specifically, the first CNN is trained over a dataset of temporal (T) data (i.e. EEG sources), and is referred to as T-CNN; the second CNN is trained over a dataset of TF data (i.e. TF-maps of EEG sources), and is referred to as TF-CNN. Two sets of features denoted as T-features and TF-features, extracted from T-CNN and TF-CNN, respectively, are concatenated in a single features vector (denoted as TTF-features vector) which is used as input to a standard multi-layer perceptron for classification purposes. Experimental results show a significant performance improvement of our proposed hybrid-domain DL approach as compared to temporal-only and time-frequency-only-based benchmark approaches, achieving an average accuracy of [Formula: see text]%.

Keywords: Deep learning; beamforming; brain–computer interface; electroencephalography; feature fusion; wavelet transform.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources