Automatic detection of 39 fundus diseases and conditions in retinal photographs using deep neural networks
- PMID: 34376678
- PMCID: PMC8355164
- DOI: 10.1038/s41467-021-25138-w
Automatic detection of 39 fundus diseases and conditions in retinal photographs using deep neural networks
Abstract
Retinal fundus diseases can lead to irreversible visual impairment without timely diagnoses and appropriate treatments. Single disease-based deep learning algorithms had been developed for the detection of diabetic retinopathy, age-related macular degeneration, and glaucoma. Here, we developed a deep learning platform (DLP) capable of detecting multiple common referable fundus diseases and conditions (39 classes) by using 249,620 fundus images marked with 275,543 labels from heterogenous sources. Our DLP achieved a frequency-weighted average F1 score of 0.923, sensitivity of 0.978, specificity of 0.996 and area under the receiver operating characteristic curve (AUC) of 0.9984 for multi-label classification in the primary test dataset and reached the average level of retina specialists. External multihospital test, public data test and tele-reading application also showed high efficiency for multiple retinal diseases and conditions detection. These results indicate that our DLP can be applied for retinal fundus disease triage, especially in remote areas around the world.
© 2021. The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures
Similar articles
-
Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images.Ophthalmology. 2020 Jan;127(1):85-94. doi: 10.1016/j.ophtha.2019.05.029. Epub 2019 May 31. Ophthalmology. 2020. PMID: 31281057
-
Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs.Ophthalmology. 2018 Aug;125(8):1199-1206. doi: 10.1016/j.ophtha.2018.01.023. Epub 2018 Mar 2. Ophthalmology. 2018. PMID: 29506863
-
Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs.JAMA. 2016 Dec 13;316(22):2402-2410. doi: 10.1001/jama.2016.17216. JAMA. 2016. PMID: 27898976
-
Fundus photograph-based deep learning algorithms in detecting diabetic retinopathy.Eye (Lond). 2019 Jan;33(1):97-109. doi: 10.1038/s41433-018-0269-y. Epub 2018 Nov 6. Eye (Lond). 2019. PMID: 30401899 Free PMC article. Review.
-
Deep learning-based detection of diabetic macular edema using optical coherence tomography and fundus images: A meta-analysis.Indian J Ophthalmol. 2023 May;71(5):1783-1796. doi: 10.4103/IJO.IJO_2614_22. Indian J Ophthalmol. 2023. PMID: 37203031 Free PMC article. Review.
Cited by
-
Automated Lung and Colon Cancer Classification Using Histopathological Images.Biomed Eng Comput Biol. 2024 Aug 14;15:11795972241271569. doi: 10.1177/11795972241271569. eCollection 2024. Biomed Eng Comput Biol. 2024. PMID: 39156985 Free PMC article.
-
DeepQuality improves infant retinopathy screening.NPJ Digit Med. 2023 Oct 16;6(1):192. doi: 10.1038/s41746-023-00943-3. NPJ Digit Med. 2023. PMID: 37845275 Free PMC article.
-
Research progress in artificial intelligence assisted diabetic retinopathy diagnosis.Int J Ophthalmol. 2023 Sep 18;16(9):1395-1405. doi: 10.18240/ijo.2023.09.05. eCollection 2023. Int J Ophthalmol. 2023. PMID: 37724288 Free PMC article.
-
Service Quality and Residents' Preferences for Facilitated Self-Service Fundus Disease Screening: Cross-Sectional Study.J Med Internet Res. 2024 Apr 17;26:e45545. doi: 10.2196/45545. J Med Internet Res. 2024. PMID: 38630535 Free PMC article.
-
A Multi-Label Detection Deep Learning Model with Attention-Guided Image Enhancement for Retinal Images.Micromachines (Basel). 2023 Mar 22;14(3):705. doi: 10.3390/mi14030705. Micromachines (Basel). 2023. PMID: 36985112 Free PMC article.
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
