Gold Coast diagnostic criteria: Implications for ALS diagnosis and clinical trial enrollment

Muscle Nerve. 2021 Nov;64(5):532-537. doi: 10.1002/mus.27392. Epub 2021 Aug 24.

Abstract

Diagnostic criteria for amyotrophic lateral sclerosis (ALS) are complex, incorporating multiple levels of certainty from possible through to definite, and are thereby prone to error. Specifically, interrater variability was previously established to be poor, thereby limiting utility as diagnostic enrollment criteria for clinical trials. In addition, the different levels of diagnostic certainty do not necessarily reflect disease progression, adding confusion to the diagnostic algorithm. Realizing these inherent limitations, the World Federation of Neurology, the International Federation of Clinical Neurophysiology, the International Alliance of ALS/MND Associations, the ALS Association (United States), and the Motor Neuron Disease Association convened a consensus meeting (Gold Coast, Australia, 2019) to consider the development of simpler criteria that better reflect clinical practice, and that could merge diagnostic categories into a single entity. The diagnostic accuracy of the novel Gold Coast criteria was subsequently interrogated through a large cross-sectional study, which established an increased sensitivity for ALS diagnosis when compared with previous criteria. Diagnostic accuracy was maintained irrespective of disease duration, functional status, or site of disease onset. Importantly, the Gold Coast criteria differentiated atypical phenotypes, such as primary lateral sclerosis, from the more typical ALS phenotype. It is proposed that the Gold Coast criteria should be incorporated into routine practice and clinical trial settings.

Keywords: ALS; Gold Coast criteria; clinical trials; lower motor neuron; upper motor neuron.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amyotrophic Lateral Sclerosis* / drug therapy
  • Amyotrophic Lateral Sclerosis* / therapy
  • Australia
  • Cross-Sectional Studies
  • Humans
  • Motor Neuron Disease* / diagnosis