Objectives: This systematic review evaluates breast reconstruction options for women after mastectomy for breast cancer (or breast cancer prophylaxis). We addressed six Key Questions (KQs): (1) implant-based reconstruction (IBR) versus autologous reconstruction (AR), (2) timing of IBR and AR in relation to chemotherapy and radiation therapy, (3) comparisons of implant materials, (4) comparisons of anatomic planes for IBR, (5) use versus nonuse of human acellular dermal matrices (ADMs) during IBR, and (6) comparisons of AR flap types.
Data sources and review methods:
We searched Medline®, Embase®, Cochrane CENTRAL, CINAHL®, and
Results: We found 8 randomized controlled trials, 83 nonrandomized comparative studies, and 69 single group studies. Risk of bias was moderate to high for most studies. KQ1: Compared with IBR, AR is probably associated with clinically better patient satisfaction with breasts and sexual well-being but comparable general quality of life and psychosocial well-being (moderate SoE, all outcomes). AR probably poses a greater risk of deep vein thrombosis or pulmonary embolism (moderate SoE), but IBR probably poses a greater risk of reconstructive failure in the long term (1.5 to 4 years) (moderate SoE) and may pose a greater risk of breast seroma (low SoE). KQ 2: Conducting IBR either before or after radiation therapy may result in comparable physical well-being, psychosocial well-being, sexual well-being, and patient satisfaction with breasts (all low SoE), and probably results in comparable risks of implant failure/loss or need for explant surgery (moderate SoE). We found no evidence addressing timing of IBR or AR in relation to chemotherapy or timing of AR in relation to radiation therapy. KQ 3: Silicone and saline implants may result in clinically comparable patient satisfaction with breasts (low SoE). There is insufficient evidence regarding double lumen implants. KQ 4: Whether the implant is placed in the prepectoral or total submuscular plane may not be associated with risk of infections that are not explicitly implant related (low SoE). There is insufficient evidence addressing the comparisons between prepectoral and partial submuscular and between partial and total submuscular planes. KQ 5: The evidence is inconsistent regarding whether human ADM use during IBR impacts physical well-being, psychosocial well-being, or satisfaction with breasts. However, ADM use probably increases the risk of implant failure/loss or need for explant surgery (moderate SoE) and may increase the risk of infections not explicitly implant related (low SoE). Whether or not ADM is used probably is associated with comparable risks of seroma and unplanned repeat surgeries for revision (moderate SoE for both), and possibly necrosis (low SoE). KQ 6: AR with either transverse rectus abdominis (TRAM) or deep inferior epigastric perforator (DIEP) flaps may result in comparable patient satisfaction with breasts (low SoE), but TRAM flaps probably increase the risk of harms to the area of flap harvest (moderate SoE). AR with either DIEP or latissimus dorsi flaps may result in comparable patient satisfaction with breasts (low SoE), but there is insufficient evidence regarding thromboembolic events and no evidence regarding other surgical complications.
Conclusion: Evidence regarding surgical breast reconstruction options is largely insufficient or of only low or moderate SoE. New high-quality research is needed, especially for timing of IBR and AR in relation to chemotherapy and radiation therapy, for comparisons of implant materials, and for comparisons of anatomic planes of implant placement.