The trans cell cycle effects of PARP inhibitors underlie their selectivity toward BRCA1/2-deficient cells

Genes Dev. 2021 Sep 1;35(17-18):1271-1289. doi: 10.1101/gad.348479.121. Epub 2021 Aug 12.

Abstract

PARP inhibitor (PARPi) is widely used to treat BRCA1/2-deficient tumors, but why PARPi is more effective than other DNA-damaging drugs is unclear. Here, we show that PARPi generates DNA double-strand breaks (DSBs) predominantly in a trans cell cycle manner. During the first S phase after PARPi exposure, PARPi induces single-stranded DNA (ssDNA) gaps behind DNA replication forks. By trapping PARP on DNA, PARPi prevents the completion of gap repair until the next S phase, leading to collisions of replication forks with ssDNA gaps and a surge of DSBs. In the second S phase, BRCA1/2-deficient cells are unable to suppress origin firing through ATR, resulting in continuous DNA synthesis and more DSBs. Furthermore, BRCA1/2-deficient cells cannot recruit RAD51 to repair collapsed forks. Thus, PARPi induces DSBs progressively through trans cell cycle ssDNA gaps, and BRCA1/2-deficient cells fail to slow down and repair DSBs over multiple cell cycles, explaining the unique efficacy of PARPi in BRCA1/2-deficient cells.

Keywords: BRCA; DNA damage; PARP inhibitor; cell cycle; replication.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • BRCA1 Protein / metabolism
  • BRCA2 Protein* / genetics
  • BRCA2 Protein* / metabolism
  • Cell Cycle / genetics
  • DNA Breaks, Double-Stranded
  • DNA Repair / genetics
  • DNA Replication
  • Poly(ADP-ribose) Polymerase Inhibitors* / pharmacology
  • Poly(ADP-ribose) Polymerase Inhibitors* / therapeutic use

Substances

  • BRCA1 Protein
  • BRCA2 Protein
  • Poly(ADP-ribose) Polymerase Inhibitors