Repeated anodal high-definition transcranial direct current stimulation over the left dorsolateral prefrontal cortex in mild cognitive impairment patients increased regional homogeneity in multiple brain regions

PLoS One. 2021 Aug 13;16(8):e0256100. doi: 10.1371/journal.pone.0256100. eCollection 2021.

Abstract

Transcranial direct current stimulation (tDCS) can improve cognitive function. However, it is not clear how high-definition tDCS (HD-tDCS) regulates the cognitive function and its neural mechanism, especially in individuals with mild cognitive impairment (MCI). This study aimed to examine whether HD-tDCS can modulate cognitive function in individuals with MCI and to determine whether the potential variety is related to spontaneous brain activity changes recorded by resting-state functional magnetic resonance imaging (rs-fMRI). Forty-three individuals with MCI were randomly assigned to receive either 10 HD-tDCS sessions or 10 sham sessions to the left dorsolateral prefrontal cortex (L-DLPFC). The fractional amplitude of low-frequency fluctuation (fALFF) and the regional homogeneity (ReHo) was computed using rs-fMRI data from all participants. The results showed that the fALFF and ReHo values changed in multiple areas following HD-tDCS. Brain regions with significant decreases in fALFF values include the Insula R, Precuneus R, Thalamus L, and Parietal Sup R, while the Temporal Inf R, Fusiform L, Occipital Sup L, Calcarine R, and Angular R showed significantly increased in their fALFF values. The brain regions with significant increases in ReHo values include the Temporal Inf R, Putamen L, Frontal Mid L, Precentral R, Frontal Sup Medial L, Frontal Sup R, and Precentral L. We found that HD-tDCS can alter the intensity and synchrony of brain activity, and our results indicate that fALFF and ReHo analysis are sensitive indicators for the detection of HD-tDCS during spontaneous brain activity. Interestingly, HD-tDCS increases the ReHo values of multiple brain regions, which may be related to the underlying mechanism of its clinical effects, these may also be related to a potential compensation mechanism involving the mobilization of more regions to complete a function following a functional decline.

Publication types

  • Clinical Trial
  • Randomized Controlled Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Aged, 80 and over
  • Brain / diagnostic imaging
  • Brain / physiology*
  • Brain Mapping / methods*
  • Cognition / physiology*
  • Cognitive Dysfunction / diagnostic imaging
  • Cognitive Dysfunction / pathology
  • Cognitive Dysfunction / therapy*
  • Dorsolateral Prefrontal Cortex / diagnostic imaging
  • Dorsolateral Prefrontal Cortex / physiology*
  • Female
  • Humans
  • Magnetic Resonance Imaging / methods*
  • Male
  • Middle Aged
  • Transcranial Direct Current Stimulation / methods*

Grants and funding

This work was supported by the National Natural Science Foundation of China (Grant No. 31972907), National Natural Science Foundation of China (U1913216), National Natural Science Foundation of China (Grant No. 61431012), Natural Science Basic Research Program of Shaanxi (Program No.2020JQ-096). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.