Comparative analysis of human induced pluripotent stem cell-derived mesenchymal stem cells and umbilical cord mesenchymal stem cells

J Cell Mol Med. 2021 Sep;25(18):8904-8919. doi: 10.1111/jcmm.16851. Epub 2021 Aug 13.

Abstract

Generation of induced pluripotent stem cells (iPSCs) and their differentiation into mesenchymal stem/stromal cells (iMSCs) have created exciting source of cells for autologous therapy. In this study, we have compared the therapeutic potential of iMSCs generated from urinary epithelial (UE) cells with the available umbilical cord MSCs (UC-MSCs). For this, adult UE cells were treated with the mRNA of pluripotent genes (OCT4, NANOG, SOX2, KLF4, MYC and LIN28) and a cocktail of miRNAs under specific culture conditions for generating iPSCs. Our non-viral and mRNA-based treatment regimen demonstrated a high reprogramming efficiency to about 30% at passage 0. These UE-iPSCs were successfully differentiated further into ectoderm, endoderm and mesoderm lineage of cells. Moreover, these UE-iPSCs were subsequently differentiated into iMSCs and were compared with the UC-MSCs. These iMSCs were capable of differentiating into osteocytes, chondrocytes and adipocytes. Our qRT-PCR and Western blot data showed that the CD73, CD90 and CD105 gene transcripts and proteins were highly expressed in iMSCs and UC-MSCs but not in other cells. The comparative qRT-PCR data showed that the iMSCs maintained their MSC characteristics without any chromosomal abnormalities even at later passages (P15), during which the UC-MSCs started losing their MSC characteristics. Importantly, the wound-healing property demonstrated through migration assay was superior in iMSCs when compared to the UC-MSCs. In this study, we have demonstrated an excellent non-invasive and pain-free method of obtaining iMSCs for regenerative therapy. These homogeneous autologous highly proliferative iMSCs may provide an alternative source of cells to UC-MSCs for treating various diseases.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Differentiation
  • Cells, Cultured
  • Humans
  • Induced Pluripotent Stem Cells / cytology*
  • Male
  • Mesenchymal Stem Cells / cytology*
  • Middle Aged
  • Regenerative Medicine / methods*
  • Umbilical Cord / cytology*