Elucidation of the photoinduced transformations of Aliskiren in river water using liquid chromatography high-resolution mass spectrometry

Sci Total Environ. 2021 Dec 15:800:149547. doi: 10.1016/j.scitotenv.2021.149547. Epub 2021 Aug 8.

Abstract

Aliskiren was selected as a compound of potential concern among a suspect screening list of more than 40,000 substances on a basis of high occurrence, potential risk and the absence of information about its environmental fate. This study investigated the photoinduced degradation of aliskiren in river water samples spiked at trace levels exposed to simulated sunlight. A half-life time of 24 h was observed with both direct and indirect photolysis playing a role on pollutant degradation. Its photo-induced transformation involved the formation of six transformation products (TPs), elucidated by LC-HRMS - resulted from the drug hydroxylation, oxidation and moieties loss with subsequent cyclization structurally. The retrospective suspected analysis performed on a total of 754 environmental matrices evidenced the environmental occurrence of aliskiren and two TPs in surface waters (river and seawater), fresh water, sediments and biota. In silico bioassays suggested that aliskiren degradation undergoes thought the formation of TPs with distinct toxicity comparing with the parent compound.

Keywords: Aliskiren; Environmental fate; HRMS; Toxicity; Transformation products.

MeSH terms

  • Amides
  • Chromatography, Liquid
  • Fresh Water
  • Fumarates
  • Mass Spectrometry
  • Photolysis
  • Retrospective Studies
  • Rivers*
  • Water
  • Water Pollutants, Chemical* / analysis

Substances

  • Amides
  • Fumarates
  • Water Pollutants, Chemical
  • Water
  • aliskiren