Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Nov;51(11):2423-2436.
doi: 10.1007/s40279-021-01530-w. Epub 2021 Aug 15.

Exercise Performance and Thermoregulatory Responses of Elite Athletes Exercising in the Heat: Outcomes of the Thermo Tokyo Study

Affiliations
Free PMC article

Exercise Performance and Thermoregulatory Responses of Elite Athletes Exercising in the Heat: Outcomes of the Thermo Tokyo Study

Johannus Q de Korte et al. Sports Med. 2021 Nov.
Free PMC article

Abstract

Objective: We examined the impact of simulated Tokyo 2020 environmental condition on exercise performance, thermoregulatory responses and thermal perception among Dutch elite athletes.

Methods: 105 elite athletes from different sport disciplines performed two exercise tests in simulated control (15.9 ± 1.2 °C, relative humidity (RH) 55 ± 6%) and Tokyo (31.6 ± 1.0 °C, RH 74 ± 5%) environmental conditions. Exercise tests consisted of a 20-min warm-up (70% HRmax), followed by an incremental phase until volitional exhaustion (5% workload increase every 3 min). Gastrointestinal temperature (Tgi), heart rate, exercise performance and thermal perception were measured.

Results: Time to exhaustion was 16 ± 8 min shorter in the Tokyo versus the control condition (- 26 ± 11%, whereas peak power output decreased with 0.5 ± 0.3 W/kg (16 ± 7%). Greater exercise-induced increases in Tgi (1.8 ± 0.6 °C vs. 1.5 ± 0.5 °C, p < 0.001) and higher peak Tgi (38.9 ± 0.6 °C vs. 38.7 ± 0.4 °C, p < 0.001) were found in the Tokyo versus control condition. Large interindividual variations in exercise-induced increase in Tgi (range 0.7-3.5 °C) and peak Tgi (range 37.6-40.4 °C) were found in the Tokyo condition, with greater Tgi responses in endurance versus mixed- and skill-trained athletes. Peak thermal sensation and thermal comfort scores deteriorated in the Tokyo condition, with aggravated responses for power versus endurance- and mixed-trained athletes.

Conclusion: Large performance losses and Tgi increases were found among elite athletes exercising in simulated Tokyo conditions, with a substantial interindividual variation and significantly different responses across sport disciplines. These findings highlight the importance of an individual approach to optimally prepare athletes for safe and maximal exercise performance during the Tokyo Olympics.

PubMed Disclaimer

Conflict of interest statement

Yannick de Korte, Coen Bongers, Maria Hopman and Thijs Eijsvogels declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Group data (panels A + B) and individual data (panels C + D) of time to exhaustion (TTE) (panels A + C) and peak power output (PPO) (panels B + D) in the Tokyo condition relative to the control condition. Data in the upper panels are presented as mean ± SD. The relative changes in exercise performance were not different across sport disciplines. Each bar of panels C and D represent data from an individual athlete, highlighting the large interindividual variability in changes in exercise performance during exercise in the heat
Fig. 2
Fig. 2
A Exercise-induced increases in gastrointestinal temperature (Tgi), B skin temperature (Tsk) and C heart rate (HR) during the control (blue lines) and Tokyo (red lines) conditions. A An increase in Tgi was observed in both conditions, with greater values in the Tokyo versus the control condition. B Tsk increased over time with greater values in the Tokyo versus the control condition. C HR values increased over time in both conditions, with higher values in the Tokyo versus the control condition. Data are presented as mean ± SD for all time points with a sample size > 10% of our cohort
Fig. 3
Fig. 3
Group data (panels A + B) and individual data (panels C + D) of peak gastrointestinal temperature (Tgi) achieved during the control (panels A + C) and Tokyo (panel B + D) conditions. Data in the upper panels are presented as mean ± SD. Endurance athletes demonstrated a significantly higher peak Tgi in the Tokyo condition compared to mixed and skill athletes. Each bar of panels C and D represent data from an individual athlete, whereas the largest interindividual variability can be observed in the Tokyo condition
Fig. 4
Fig. 4
Correlations between percentual changes in time to exhaustion (panels A + C) and peak power output (panels B + D) and the exercise-induced Tgi increase (panels A + B) and peak Tgi (panels C + D) in the Tokyo condition. Neither peak Tgi nor exercise-induced increase in Tgi were associated with the changes in time to exhaustion or peak power output between the Tokyo and control conditions

Similar articles

Cited by

References

    1. Gerrett N, Kingma BRM, Sluijter R, Daanen HAM. Ambient conditions prior to Tokyo 2020 Olympic and Paralympic Games: considerations for acclimation or acclimatization strategies. Front Physiol. 2019;10(414):414. doi: 10.3389/fphys.2019.00414. - DOI - PMC - PubMed
    1. Kakamu T, Wada K, Smith DR, Endo S, Fukushima T. Preventing heat illness in the anticipated hot climate of the Tokyo 2020 Summer Olympic Games. Environ Health Prev Med. 2017;22(1):68. doi: 10.1186/s12199-017-0675-y. - DOI - PMC - PubMed
    1. Sawka MN, Leon LR, Montain SJ, Sonna LA. Integrated physiological mechanisms of exercise performance, adaptation, and maladaptation to heat stress. Compr Physiol. 2011;1(4):1883–1928. doi: 10.1002/cphy.c100082. - DOI - PubMed
    1. American College of Sports M. Armstrong LE, Casa DJ, Millard-Stafford M, Moran DS, Pyne SW, et al. American College of Sports Medicine position stand. Exertional heat illness during training and competition. Med Sci Sports Exerc. 2007;39(3):556–572. doi: 10.1249/MSS.0b013e31802fa199. - DOI - PubMed
    1. Cheuvront SN, Haymes EM. Thermoregulation and marathon running: biological and environmental influences. Sports Med (Auckland, NZ) 2001;31(10):743–762. doi: 10.2165/00007256-200131100-00004. - DOI - PubMed