Dural Stimulation and Periorbital von Frey Testing in Mice As a Preclinical Model of Headache

J Vis Exp. 2021 Jul 29:(173):10.3791/62867. doi: 10.3791/62867.

Abstract

The cranial meninges, comprised of the dura mater, arachnoid, and pia mater, are thought to primarily serve structural functions for the nervous system. For example, they protect the brain from the skull and anchor/organize the vascular and neuronal supply of the cortex. However, the meninges are also implicated in nervous system disorders such as migraine, where the pain experienced during a migraine is attributed to local sterile inflammation and subsequent activation of local nociceptive afferents. Of the layers in the meninges, the dura mater is of particular interest in the pathophysiology of migraines. It is highly vascularized, harbors local nociceptive neurons, and is home to a diverse array of resident cells such as immune cells. Subtle changes in the local meningeal microenvironment may lead to activation and sensitization of dural perivascular nociceptors, thus leading to migraine pain. Studies have sought to address how dural afferents become activated/sensitized by using either in vivo electrophysiology, imaging techniques, or behavioral models, but these commonly require very invasive surgeries. This protocol presents a method for comparatively non-invasive application of compounds on the dura mater in mice and a suitable method for measuring headache-like tactile sensitivity using periorbital von Frey testing following dural stimulation. This method maintains the integrity of the dura and skull and reduces confounding effects from invasive techniques by injecting substances through a 0.65 mm modified cannula at the junction of unfused sagittal and lambdoid sutures. This preclinical model will allow researchers to investigate a wide range of dural stimuli and their role in the pathological progression of migraine, such as nociceptor activation, immune cell activation, vascular changes, and pain behaviors, all while maintaining injury-free conditions to the skull and meninges.

Publication types

  • Research Support, N.I.H., Extramural
  • Video-Audio Media

MeSH terms

  • Animals
  • Dura Mater
  • Headache*
  • Meninges
  • Mice
  • Migraine Disorders*
  • Rats
  • Rats, Sprague-Dawley