Stretchable and Bioadhesive Gelatin Methacryloyl-Based Hydrogels Enabled by in Situ Dopamine Polymerization

ACS Appl Mater Interfaces. 2021 Sep 1;13(34):40290-40301. doi: 10.1021/acsami.1c10048. Epub 2021 Aug 19.

Abstract

Hydrogel patches with high toughness, stretchability, and adhesive properties are critical to healthcare applications including wound dressings and wearable devices. Gelatin methacryloyl (GelMA) provides a highly biocompatible and accessible hydrogel platform. However, low tissue adhesion and poor mechanical properties of cross-linked GelMA patches (i.e., brittleness and low stretchability) have been major obstacles to their application for sealing and repair of wounds. Here, we show that adding dopamine (DA) moieties in larger quantities than those of conjugated counterparts to the GelMA prepolymer solution followed by alkaline DA oxidation could result in robust mechanical and adhesive properties in GelMA-based hydrogels. In this way, cross-linked patches with ∼140% stretchability and ∼19 000 J/m3 toughness, which correspond to ∼5.7 and ∼3.3× improvement, respectively, compared to that of GelMA controls, were obtained. The DA oxidization in the prepolymer solution was found to play an important role in activating adhesive properties of cross-linked GelMA patches (∼4.0 and ∼6.9× increase in adhesion force under tensile and shear modes, respectively) due to the presence of reactive oxidized quinone species. We further conducted a parametric study on the factors such as UV light parameters, the photoinitiator type (i.e., lithium phenyl-2,4,6-trimethylbenzoylphosphinate, LAP, versus 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone, Irgacure 2959), and alkaline DA oxidation to tune the cross-linking density and thereby hydrogel compliance for better adhesive properties. The superior adhesion performance of the resulting hydrogel along with in vitro cytocompatibility demonstrated its potential for use in skin-attachable substrates.

Keywords: adhesive; dopamine; gelatin methacryloyl; mussel-inspired; stretchable; tough.

Publication types

  • Video-Audio Media

MeSH terms

  • Adhesives / chemical synthesis
  • Adhesives / chemistry*
  • Adhesives / toxicity
  • Animals
  • Cell Survival / drug effects
  • Cross-Linking Reagents / chemistry
  • Cross-Linking Reagents / radiation effects
  • Cross-Linking Reagents / toxicity
  • Dopamine / chemistry
  • Dopamine / radiation effects
  • Gelatin / chemistry*
  • Gelatin / radiation effects
  • Gelatin / toxicity
  • Hydrogels / chemical synthesis
  • Hydrogels / chemistry*
  • Hydrogels / toxicity
  • Indoles / chemical synthesis
  • Indoles / chemistry*
  • Indoles / toxicity
  • Materials Testing
  • Methacrylates / chemistry*
  • Methacrylates / radiation effects
  • Methacrylates / toxicity
  • Mice
  • NIH 3T3 Cells
  • Polymerization / radiation effects
  • Polymers / chemical synthesis
  • Polymers / chemistry*
  • Polymers / toxicity
  • Skin / metabolism
  • Swine
  • Tensile Strength
  • Ultraviolet Rays

Substances

  • Adhesives
  • Cross-Linking Reagents
  • Hydrogels
  • Indoles
  • Methacrylates
  • Polymers
  • gelatin methacryloyl
  • polydopamine
  • Gelatin
  • Dopamine