Classic Pentachlorophenol Hydroxylating Phenylalanine 4-Monooxygenase from Indigenous Bacillus tropicus Strain AOA-CPS1: Cloning, Overexpression, Purification, Characterization and Structural Homology Modelling

Appl Biochem Biotechnol. 2022 Feb;194(2):635-658. doi: 10.1007/s12010-021-03645-2. Epub 2021 Aug 20.

Abstract

The metabolically promiscuous pentachlorophenol (PCP) hydroxylating Phe4MO (represented as CpsB) was detected, amplified (from the genome of Bacillus tropicus strain AOA-CPS1), cloned, overexpressed, purified and characterized here. The 1.755-kb gene cloned in the pET15b vector expressed a ≅ 64 kDa monomeric protein which was purified to homogeneity by single-step affinity chromatography, with a total yield of 82.1%. The optimum temperature and pH of the enzyme were found to be 30 °C and 7.0, respectively. CpsB showed functional stability between pH 6.0-7.5 and temperature 25-30 °C. The enzyme-substrate reaction kinetic studies showed the allosteric nature of the enzyme and followed pre-steady state using NADH as a co-substrate with apparent vmax, Km, kcat and kcat/Km values of 0.465 μM.s-1, 140 μM, 0.099 s-1 and 7.07 × 10-4 μM-1.s-1, respectively, for the substrate PCP. The in-gel trypsin digestion experiments and bioinformatic tools confirmed that the reported enzyme is a Phe4MO with multiple putative conserved domains and metal ion-binding site. Though Phe4MO has been reported to have a diverse catalytic function, here we report, for the first time, that it functions as a PCP dehalogenase or PCP-4-monooxygenase by hydroxylating PCP. Hence, the use of this enzyme may be further explored in the bioremediation of PCP and other related xenobiotics.

Keywords: Pentachlorophenol; Phenylalanine 4-monooxygenase; Phenylalanine hydroxylase.

MeSH terms

  • Pentachlorophenol*

Substances

  • Pentachlorophenol