Statement of problem: The debonding of zirconia cantilevered resin-bonded fixed dental prostheses remains a technical complication because zirconia's chemical inertness impedes adequate surface preparation for bonding. Limited clinical evidence on the performance of various pretreatment methods for the bonding surface of zirconia resin-bonded fixed dental prostheses is available.
Purpose: The present prospective, randomized, controlled clinical trial aimed at evaluating the performance of zirconia resin-bonded fixed dental prostheses prepared with nanostructured alumina coating.
Material and methods: The study adopted a prospective, randomized, controlled, double-blind (patients, operator) design to compare the performance of nanostructured alumina coating with that of conventional airborne-particle abrasion. Twenty-seven healthy patients needing a replacement of a missing maxillary or mandibular central or lateral incisor were screened and rated to be eligible, and 31 zirconia cantilevered resin-bonded fixed dental prostheses were randomly allocated into 1 of 2 groups. The first group (n=15), where the restoration bonding surface was airborne-particle abraded with 50-μm alumina, served as a control group. In the second group (n=16), the restorations were pretreated with nanostructured alumina coating. Treatment and data collection were standardized. The primary outcome evaluated was the survival of the RBFDPs as defined by the restoration not debonding. The Kaplan-Meier analysis of cumulative survival was performed, and nonparametric tests were used to determine patient-specific differences between both study groups (age, sex, restored arch, tooth replaced, bonding surface area) (α=.05). Retainer wing surfaces of debonded resin-bonded fixed dental prostheses were inspected under a scanning electron microscope.
Results: Within a mean ±standard deviation observation period of 22.4 ±7.7 months (minimum, 8.3; maximum, 37.9 months), 3 debondings occurred, and the survival rate was 90.3%. The survival rate was 93.8% for the nanostructured alumina coating and 86.7% for the control group, with no statistically significant differences (log-rank, P=.54). No patient-specific differences were found between study groups (P>.05). As per the scanning electron micrographs, the majority of the nanostructured alumina-coated surfaces had large areas of nanostructured alumina residue, whereas the airborne-particle abraded surfaces exhibited predominantly adhesive failure with less cement residue.
Conclusions: Over a mean observation period of 2 years, both zirconia pretreatments showed promising and comparable clinical results; therefore, nanostructured alumina coating could be regarded as a viable alternative pretreatment method to airborne-particle abrasion.
Copyright © 2021 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.