An Anti-HER2 Monoclonal Antibody H2Mab-41 Exerts Antitumor Activities in Mouse Xenograft Model Using Dog HER2-Overexpressed Cells

Monoclon Antib Immunodiagn Immunother. 2021 Aug;40(4):184-190. doi: 10.1089/mab.2021.0025.

Abstract

Overexpression of human epidermal growth factor receptor 2 (HER2) has been reported in a variety of cancer types, including breast, lung, gastric, pancreatic, and colorectal cancers. Trastuzumab, a humanized anti-HER2 monoclonal antibody (mAb), has been shown to provide significant survival benefits in HER2-overexpressing breast cancer and gastric cancer patients. Previously, an anti-HER2 mAb, H2Mab-41 (IgG2b, kappa), was developed in our laboratory and its antitumor activity was demonstrated in mouse xenograft models of human colon cancer. The present study aimed to investigate the ability of H2Mab-41 to induce antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) in dog HER2 (dHER2)-overexpressed cell lines, and thus exert its antitumor activity against dHER2-overexpressed tumors in vivo. Flow cytometry results demonstrated the cross-reactivity of H2Mab-41 with dHER2. Further evaluation of interaction between H2Mab-41 and dHER2-overexpressed CHO-K1 (CHO/dHER2) cells indicated moderate binding affinity of H2Mab-41 toward dHER2, with a dissociation constant (KD) of 2.6 × 10-8 M. In vitro analysis revealed that the administration of H2Mab-41 induced high levels of ADCC and CDC in CHO/dHER2 cells. Furthermore, intraperitoneal administration of H2Mab-41 in mouse xenograft models of CHO/dHER2 resulted in significant inhibition of tumor development compared to the control mouse IgG. Thus, the findings of the present study demonstrated the in vivo safety and efficacy of H2Mab-41, highlighting its suitability to be included as a part of a therapeutic regimen for dHER2-expressing canine cancers.

Keywords: ADCC; CDC; HER2; antitumor activity; monoclonal antibody.

MeSH terms

  • Animals
  • Antibodies, Monoclonal* / pharmacology
  • Cell Line, Tumor
  • Cricetinae
  • Dogs
  • Heterografts
  • Humans
  • Mice
  • Mice, Inbred BALB C
  • Receptor, ErbB-2*
  • Xenograft Model Antitumor Assays

Substances

  • Antibodies, Monoclonal
  • ERBB2 protein, human
  • Receptor, ErbB-2