Antenna organization in green photosynthetic bacteria. 1. Oligomeric bacteriochlorophyll c as a model for the 740 nm absorbing bacteriochlorophyll c in Chloroflexus aurantiacus chlorosomes

Biochemistry. 1987 Dec 29;26(26):8644-52. doi: 10.1021/bi00400a023.

Abstract

Bacteriochlorophyll (BChl) c was extracted from Chloroflexus aurantiacus and purified by reverse-phase high-pressure liquid chromatography. This pigment consists of a complex mixture of homologues, the major component of which is 4-ethyl-5-methylbacteriochlorophyll c stearyl ester. Unlike previously characterized BChls c, the pigment from C. aurantiacus is a racemic mixture of diastereoisomers with different configurations at the 2a chiral center. Diluting a concentrated methylene chloride solution of BChl c with hexane produces an oligomer with absorption maxima at 740-742 and at 460-462 nm. Both the absorption spectrum and the fluorescence emission spectrum (maximum at 750 nm) of this oligomer closely match those of BChl c in chlorosomes. Further support for this model comes from the ability of alcohols, which disrupt BChl c oligomers by ligating the central Mg atom, to convert BChl c in chlorosomes to a monomeric form when added in low concentrations. The lifetime of fluorescence from the 740 nm absorbing BChl c oligomer is about 80 ps. Although exciton quenching might be unusually fast in the in vitro BChl c oligomer because of its large size and/or the presence of minor impurities, this result suggests that energy transfer from the BChl c antenna in chlorosomes must be very fast if it is to be efficient.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Bacteria / metabolism*
  • Bacterial Proteins / metabolism*
  • Bacteriochlorophylls*
  • Macromolecular Substances
  • Magnetic Resonance Spectroscopy
  • Organoids / metabolism
  • Photosynthesis
  • Spectrophotometry

Substances

  • Bacterial Proteins
  • Bacteriochlorophylls
  • Macromolecular Substances
  • bacteriochlorophyll c