From DNA human sequence to the chromatin higher order organisation and its biological meaning: Using biomolecular interaction networks to understand the influence of structural variation on spatial genome organisation and its functional effect

Semin Cell Dev Biol. 2022 Jan;121:171-185. doi: 10.1016/j.semcdb.2021.08.007. Epub 2021 Aug 22.


The three-dimensional structure of the human genome has been proven to have a significant functional impact on gene expression. The high-order spatial chromatin is organised first by looping mediated by multiple protein factors, and then it is further formed into larger structures of topologically associated domains (TADs) or chromatin contact domains (CCDs), followed by A/B compartments and finally the chromosomal territories (CTs). The genetic variation observed in human population influences the multi-scale structures, posing a question regarding the functional impact of structural variants reflected by the variability of the genes expression patterns. The current methods of evaluating the functional effect include eQTLs analysis which uses statistical testing of influence of variants on spatially close genes. Rarely, non-coding DNA sequence changes are evaluated by their impact on the biomolecular interaction network (BIN) reflecting the cellular interactome that can be analysed by the classical graph-theoretic algorithms. Therefore, in the second part of the review, we introduce the concept of BIN, i.e. a meta-network model of the complete molecular interactome developed by integrating various biological networks. The BIN meta-network model includes DNA-protein binding by the plethora of protein factors as well as chromatin interactions, therefore allowing connection of genomics with the downstream biomolecular processes present in a cell. As an illustration, we scrutinise the chromatin interactions mediated by the CTCF protein detected in a ChIA-PET experiment in the human lymphoblastoid cell line GM12878. In the corresponding BIN meta-network the DNA spatial proximity is represented as a graph model, combined with the Proteins-Interaction Network (PIN) of human proteome using the Gene Association Network (GAN). Furthermore, we enriched the BIN with the signalling and metabolic pathways and Gene Ontology (GO) terms to assert its functional context. Finally, we mapped the Single Nucleotide Polymorphisms (SNPs) from the GWAS studies and identified the chromatin mutational hot-spots associated with a significant enrichment of SNPs related to autoimmune diseases. Afterwards, we mapped Structural Variants (SVs) from healthy individuals of 1000 Genomes Project and identified an interesting example of the missing protein complex associated with protein Q6GYQ0 due to a deletion on chromosome 14. Such an analysis using the meta-network BIN model is therefore helpful in evaluating the influence of genetic variation on spatial organisation of the genome and its functional effect in a cell.

Keywords: CTCF; Chromatin contact domains (CCDs); Chromatin loops; Gene expression; Genetic variation; Genomics; Graphs; Meta-networks; Networks; Structural Variants; Topologically associating domains (TADs).

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Chromatin / metabolism*
  • Genome, Human / genetics*
  • Genomics / methods*
  • High-Throughput Nucleotide Sequencing / methods*
  • Humans
  • Protein Interaction Maps / genetics*


  • Chromatin