Predicting functional consequences of mutations using molecular interaction network features

Hum Genet. 2022 Jun;141(6):1195-1210. doi: 10.1007/s00439-021-02329-5. Epub 2021 Aug 25.

Abstract

Variant interpretation remains a central challenge for precision medicine. Missense variants are particularly difficult to understand as they change only a single amino acid in a protein sequence yet can have large and varied effects on protein activity. Numerous tools have been developed to identify missense variants with putative disease consequences from protein sequence and structure. However, biological function arises through higher order interactions among proteins and molecules within cells. We therefore sought to capture information about the potential of missense mutations to perturb protein interaction networks by integrating protein structure and interaction data. We developed 16 network-based annotations for missense mutations that provide orthogonal information to features classically used to prioritize variants. We then evaluated them in the context of a proven machine-learning framework for variant effect prediction across multiple benchmark datasets to demonstrate their potential to improve variant classification. Interestingly, network features resulted in larger performance gains for classifying somatic mutations than for germline variants, possibly due to different constraints on what mutations are tolerated at the cellular versus organismal level. Our results suggest that modeling variant potential to perturb context-specific interactome networks is a fruitful strategy to advance in silico variant effect prediction.

MeSH terms

  • Amino Acid Sequence
  • Computational Biology / methods
  • Humans
  • Mutation
  • Mutation, Missense*
  • Protein Interaction Maps* / genetics
  • Proteins / genetics

Substances

  • Proteins