A Soft Spot for Chemistry-Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution
- PMID: 34436287
- PMCID: PMC8398655
- DOI: 10.3390/md19080448
A Soft Spot for Chemistry-Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution
Abstract
Marine sponges are the most prolific marine sources for discovery of novel bioactive compounds. Sponge secondary metabolites are sought-after for their potential in pharmaceutical applications, and in the past, they were also used as taxonomic markers alongside the difficult and homoplasy-prone sponge morphology for species delineation (chemotaxonomy). The understanding of phylogenetic distribution and distinctiveness of metabolites to sponge lineages is pivotal to reveal pathways and evolution of compound production in sponges. This benefits the discovery rate and yield of bioprospecting for novel marine natural products by identifying lineages with high potential of being new sources of valuable sponge compounds. In this review, we summarize the current biochemical data on sponges and compare the metabolite distribution against a sponge phylogeny. We assess compound specificity to lineages, potential convergences, and suitability as diagnostic phylogenetic markers. Our study finds compound distribution corroborating current (molecular) phylogenetic hypotheses, which include yet unaccepted polyphyly of several demosponge orders and families. Likewise, several compounds and compound groups display a high degree of lineage specificity, which suggests homologous biosynthetic pathways among their taxa, which identifies yet unstudied species of this lineage as promising bioprospecting targets.
Keywords: bioactivity; chemotaxonomy; marine sponge; natural product evolution; secondary metabolite.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
Similar articles
-
Status and perspective of sponge chemosystematics.Mar Biotechnol (NY). 2007 Jan-Feb;9(1):2-19. doi: 10.1007/s10126-005-6109-7. Epub 2006 Jul 3. Mar Biotechnol (NY). 2007. PMID: 16817029 Review.
-
Chemistry, Chemotaxonomy and Biological Activity of the Latrunculid Sponges (Order Poecilosclerida, Family Latrunculiidae).Mar Drugs. 2021 Jan 9;19(1):27. doi: 10.3390/md19010027. Mar Drugs. 2021. PMID: 33435402 Free PMC article. Review.
-
Deep phylogeny and evolution of sponges (phylum Porifera).Adv Mar Biol. 2012;61:1-78. doi: 10.1016/B978-0-12-387787-1.00007-6. Adv Mar Biol. 2012. PMID: 22560777 Review.
-
A genomic view of trophic and metabolic diversity in clade-specific Lamellodysidea sponge microbiomes.Microbiome. 2020 Jun 23;8(1):97. doi: 10.1186/s40168-020-00877-y. Microbiome. 2020. PMID: 32576248 Free PMC article.
-
Metagenomic Exploration of the Marine Sponge Mycale hentscheli Uncovers Multiple Polyketide-Producing Bacterial Symbionts.mBio. 2020 Mar 24;11(2):e02997-19. doi: 10.1128/mBio.02997-19. mBio. 2020. PMID: 32209692 Free PMC article.
Cited by
-
Expanded sampling of New Zealand glass sponges (Porifera: Hexactinellida) provides new insights into biodiversity, chemodiversity, and phylogeny of the class.PeerJ. 2023 Apr 27;11:e15017. doi: 10.7717/peerj.15017. eCollection 2023. PeerJ. 2023. PMID: 37131989 Free PMC article.
-
Triterpene and Steroid Glycosides from Marine Sponges (Porifera, Demospongiae): Structures, Taxonomical Distribution, Biological Activities.Molecules. 2023 Mar 9;28(6):2503. doi: 10.3390/molecules28062503. Molecules. 2023. PMID: 36985476 Free PMC article. Review.
-
Terpene biosynthesis in marine sponge animals.Proc Natl Acad Sci U S A. 2023 Feb 28;120(9):e2220934120. doi: 10.1073/pnas.2220934120. Epub 2023 Feb 21. Proc Natl Acad Sci U S A. 2023. PMID: 36802428 Free PMC article.
-
Metabolomics with multi-block modelling of mass spectrometry and nuclear magnetic resonance in order to discriminate Haplosclerida marine sponges.Anal Bioanal Chem. 2022 Aug;414(19):5929-5942. doi: 10.1007/s00216-022-04158-5. Epub 2022 Jun 20. Anal Bioanal Chem. 2022. PMID: 35725831
-
Dactylospongia elegans-A Promising Drug Source: Metabolites, Bioactivities, Biosynthesis, Synthesis, and Structural-Activity Relationship.Mar Drugs. 2022 Mar 23;20(4):221. doi: 10.3390/md20040221. Mar Drugs. 2022. PMID: 35447894 Free PMC article. Review.
References
-
- Gehling J.G., Rigby J.K. Long Expected Sponges from the Neoproterozoic Ediacara Fauna of South Australia. J. Paleontol. 1996;70:185–195. doi: 10.1017/S0022336000023283. - DOI
-
- Schuster A., Vargas S., Knapp I.S., Pomponi S.A., Toonen R.J., Erpenbeck D., Wörheide G. Divergence Times in Demosponges (Porifera): First Insights from New Mitogenomes and the Inclusion of Fossils in a Birth-Death Clock Model. BMC Evol. Biol. 2018;18:114. doi: 10.1186/s12862-018-1230-1. - DOI - PMC - PubMed
-
- Van Soest R.W.M., Boury-Esnault N., Hooper J.N.A., Rützler K., de Voogd N.J., Alvarez B., Hajdu E., Pisera A.B., Manconi R., Schönberg C., et al. World Porifera Database. The World Register of Marine Species (WoRMS) [(accessed on 12 June 2021)];2021 Available online: http://www.marinespecies.org/porifera.
-
- Manconi R., Pronzato R. Global Diversity of Sponges (Porifera: Spongillina) in Freshwater. Hydrobiologia. 2008;595:27–33. doi: 10.1007/s10750-007-9000-x. - DOI
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
