Highly conductive and elastic nanomembrane for skin electronics

Science. 2021 Aug 27;373(6558):1022-1026. doi: 10.1126/science.abh4357.

Abstract

Skin electronics require stretchable conductors that satisfy metallike conductivity, high stretchability, ultrathin thickness, and facile patternability, but achieving these characteristics simultaneously is challenging. We present a float assembly method to fabricate a nanomembrane that meets all these requirements. The method enables a compact assembly of nanomaterials at the water-oil interface and their partial embedment in an ultrathin elastomer membrane, which can distribute the applied strain in the elastomer membrane and thus lead to a high elasticity even with the high loading of the nanomaterials. Furthermore, the structure allows cold welding and bilayer stacking, resulting in high conductivity. These properties are preserved even after high-resolution patterning by using photolithography. A multifunctional epidermal sensor array can be fabricated with the patterned nanomembranes.

Publication types

  • Research Support, Non-U.S. Gov't