Geometric deep learning of RNA structure
- PMID: 34446608
- PMCID: PMC9829186
- DOI: 10.1126/science.abe5650
Geometric deep learning of RNA structure
Erratum in
-
Erratum for the Report "Geometric deep learning of RNA structure" by R. J. L. Townshend et al.Science. 2023 Jan 27;379(6630):eadg6616. doi: 10.1126/science.adg6616. Epub 2023 Jan 26. Science. 2023. PMID: 36701473 No abstract available.
Abstract
RNA molecules adopt three-dimensional structures that are critical to their function and of interest in drug discovery. Few RNA structures are known, however, and predicting them computationally has proven challenging. We introduce a machine learning approach that enables identification of accurate structural models without assumptions about their defining characteristics, despite being trained with only 18 known RNA structures. The resulting scoring function, the Atomic Rotationally Equivariant Scorer (ARES), substantially outperforms previous methods and consistently produces the best results in community-wide blind RNA structure prediction challenges. By learning effectively even from a small amount of data, our approach overcomes a major limitation of standard deep neural networks. Because it uses only atomic coordinates as inputs and incorporates no RNA-specific information, this approach is applicable to diverse problems in structural biology, chemistry, materials science, and beyond.
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Conflict of interest statement
Figures
Comment in
-
Piercing the fog of the RNA structure-ome.Science. 2021 Aug 27;373(6558):964-965. doi: 10.1126/science.abk1971. Science. 2021. PMID: 34446594 Free PMC article. No abstract available.
Similar articles
-
gRNAde: A Geometric Deep Learning Pipeline for 3D RNA Inverse Design.Methods Mol Biol. 2025;2847:121-135. doi: 10.1007/978-1-0716-4079-1_8. Methods Mol Biol. 2025. PMID: 39312140
-
Hierarchical, rotation-equivariant neural networks to select structural models of protein complexes.Proteins. 2021 May;89(5):493-501. doi: 10.1002/prot.26033. Epub 2020 Dec 31. Proteins. 2021. PMID: 33289162
-
Predicting RNA SHAPE scores with deep learning.RNA Biol. 2020 Sep;17(9):1324-1330. doi: 10.1080/15476286.2020.1760534. Epub 2020 May 31. RNA Biol. 2020. PMID: 32476596 Free PMC article.
-
Structure-based drug design with geometric deep learning.Curr Opin Struct Biol. 2023 Apr;79:102548. doi: 10.1016/j.sbi.2023.102548. Epub 2023 Feb 24. Curr Opin Struct Biol. 2023. PMID: 36842415 Review.
-
Geometric deep learning methods and applications in 3D structure-based drug design.Drug Discov Today. 2024 Jul;29(7):104024. doi: 10.1016/j.drudis.2024.104024. Epub 2024 May 16. Drug Discov Today. 2024. PMID: 38759948 Review.
Cited by
-
A geometric deep learning model for display and prediction of potential drug-virus interactions against SARS-CoV-2.Chemometr Intell Lab Syst. 2022 Oct 15;229:104640. doi: 10.1016/j.chemolab.2022.104640. Epub 2022 Aug 24. Chemometr Intell Lab Syst. 2022. PMID: 36042844 Free PMC article.
-
Far-Field Electrostatic Signatures of Macromolecular 3D Conformation.Nano Lett. 2022 Oct 12;22(19):7834-7840. doi: 10.1021/acs.nanolett.2c02485. Epub 2022 Sep 20. Nano Lett. 2022. PMID: 36125326 Free PMC article.
-
RNA Metabolism Governs Immune Function and Response.Adv Exp Med Biol. 2024;1444:145-161. doi: 10.1007/978-981-99-9781-7_10. Adv Exp Med Biol. 2024. PMID: 38467978 Review.
-
Determining structures of individual RNA conformers using atomic force microscopy images and deep neural networks.Res Sq [Preprint]. 2023 Jun 7:rs.3.rs-2798658. doi: 10.21203/rs.3.rs-2798658/v1. Res Sq. 2023. Update in: Nature. 2024 Dec 18. doi: 10.1038/s41586-024-07559-x PMID: 37425706 Free PMC article. Updated. Preprint.
-
Machine learning in RNA structure prediction: Advances and challenges.Biophys J. 2024 Sep 3;123(17):2647-2657. doi: 10.1016/j.bpj.2024.01.026. Epub 2024 Jan 30. Biophys J. 2024. PMID: 38297836 Review.
References
-
- Cech TR, Steitz JA, Cell 157, 77–94 (2014). - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
