VvANR silencing promotes expression of VvANS and accumulation of anthocyanin in grape berries

Protoplasma. 2022 May;259(3):743-753. doi: 10.1007/s00709-021-01698-y. Epub 2021 Aug 26.

Abstract

Virus-induced gene silencing (VIGS) technology was applied to silence VvANR in cv. Zaoheibao grape berries, and the effects of VvANR silencing on berries phenotype; gene expression level of ANS, LAR1, LAR2, and UFGT; enzyme activity of ANS; and accumulations of anthocyanin and flavan-3-ol were investigated. At the third day after treatment, the VvANR silenced grape berries began to turn red slightly, which was 2 days earlier than that of the control group. And the flavan-3-ol content in VvANR-silenced grape berries had been remarkable within 1 to 5 days, the ANR enzyme activity in VvANR-silenced grapes extremely significantly decreased in 3 days, and LAR enzyme activity also decreased, but the difference was not striking. The ANS enzyme activity of the transformed berries was significantly higher than that of the control after 3 days of infection, and it was exceedingly significantly higher than that of the control after 5 to 10 days. The content of anthocyanin in transformed berries increased of a very marked difference within 3 to 15 days. pTRV2-ANR infection resulted in an extremely significant decrease in the expression of VvANR gene, and the expression of VvLAR1, VvLAR2, VvMYBPA1, VvMYBPA2, and VvDFR were also down-regulated. However, the expression of VvANS and VvUFGT was up-regulated significantly. After VvANR silencing via VIGS, VvANR expression in grape berries was extremely significantly decreased, resulting in decreased ANR enzyme activity and flavan-3-ol content; berries turned red and deeper in advance. In addition, VvANR silencing can induce up-regulation of VvANS and VvUFGT expression, significantly increase ANS enzyme activity, and increase of anthocyanin accumulation.

Keywords: Flavan-3-ol; Grape berries; VIGS; VvANR; VvANS.

MeSH terms

  • Anthocyanins / metabolism
  • Fruit / genetics
  • Fruit / metabolism
  • Gene Expression Regulation, Plant
  • Transcriptional Activation
  • Vitis* / metabolism

Substances

  • Anthocyanins