Development of Hydrogels with the Incorporation of Raphanus sativus L. Seed Extract in Sodium Alginate for Wound-Healing Application

Gels. 2021 Aug 4;7(3):107. doi: 10.3390/gels7030107.

Abstract

Hydrogels prepared from polymers have been proposed for tissue regeneration and the treatment of bruise wounds. In this research work, we synthesized a Raphanus sativus L.-based wound-healing hydrogel with recognized antimicrobial activity for the healing of cutaneous lesions, drawing on its healing potential. A structural analysis was performed by Fourier transform infrared spectroscopy, confirming the interaction between sodium alginate and Raphanus sativus L. The surface morphology was studied by scanning electron microscopy. A swelling test showed that the T-1 hydrogel capability of absorption of the solution was superior compared to other synthesized samples. It was evident that the swelling tendency decreased as the Raphanus sativus L. seed extract concentration was reduced. In a thermogravimetric analysis, T-1 shows high thermal stability over other prepared hydrogel samples, enjoying a high content of seed extract compared with all samples. The prepared hydrogels were placed on the chick chorioallantoic membrane of fertilized chick eggs, and their healing capability was examined. All seed extracts containing hydrogels showed clear curative performance as compared to the control hydrogel, whereas their healing magnitude lessened as the extract ratio decreased. It was concluded from the results of the current study that the Raphanus sativus L. plant has wound-healing characteristics.

Keywords: hydrogel; polymer; sodium alginate; sustainability; wound healing.