A generic flow distribution network typically does not deliver its load at a uniform rate across a service area, instead oversupplying regions near the nutrient source while leaving downstream regions undersupplied. In this Letter we demonstrate how a local adaptive rule coupling tissue growth with nutrient density results in a flow network that self-organizes to deliver nutrients uniformly. This geometric adaptive rule can be generalized and imported to mechanics-based adaptive models to address the effects of spatial gradients in nutrients or growth factors in tissues.