Caveolin-1 knockout mice have altered serum N-glycan profile and sialyltransferase tissue expression

J Physiol Biochem. 2021 Aug 31. doi: 10.1007/s13105-021-00840-x. Online ahead of print.


Caveolin-1 (Cav-1) is a constitutive protein within caveolar membranes. Previous studies from our group and others indicated that Cav-1 could mediate N-glycosylation, α2,6-sialylation, and fucosylation in mouse hepatocarcinoma cells in vitro. However, little is known about the effect of Cav-1 expression on glycosylation modifications in vivo. In this study, the N-glycan profiles in serum from Cav-1-/- mice were investigated by lectin microarray and mass spectrometric analysis approaches. The results showed that levels of multi-antennary branched, α2,6-sialylated, and galactosylated N-glycans increased, while high-mannose typed and fucosylated N-glycans decreased in the serum of Cav-1-/- mice, compared with that of wild-type mice. Furthermore, the real-time quantitative PCR analysis indicated that α2,6-sialyltransferase gene expression decreased significantly in Cav-1-/- mouse organ tissues, but α2,3- and α2,8-sialyltransferase did not. Of them, both mRNA and protein expression levels of the β-galactoside α2,6-sialyltransferase 1 (ST6Gal-I) had dramatically reduced in Cav-1-/- mice organ tissues, which was consistent with the α2,6-sialyl Gal/GalNAc level reduced significantly in tissues instead of serum from Cav-1-/- mice. These results provide for the first time the N-glycans profile of Cav-1-/- mice serum, which will facilitate understanding the function of Cav-1 from the perspective of glycosylation.

Keywords: Caveolin-1; Glycosylation; N-glycan; Sialyltransferase.