4D biofabrication via instantly generated graded hydrogel scaffolds

Bioact Mater. 2021 Jun 5:7:324-332. doi: 10.1016/j.bioactmat.2021.05.021. eCollection 2022 Jan.

Abstract

Formation of graded biomaterials to render shape-morphing scaffolds for 4D biofabrication holds great promise in fabrication of complex structures and the recapitulation of critical dynamics for tissue/organ regeneration. Here we describe a facile generation of an adjustable and robust gradient using a single- or multi-material one-step fabrication strategy for 4D biofabrication. By simply photocrosslinking a mixed solution of a photocrosslinkable polymer macromer, photoinitiator (PI), UV absorber and live cells, a cell-laden gradient hydrogel with pre-programmable deformation can be generated. Gradient formation was demonstrated in various polymers including poly(ethylene glycol) (PEG), alginate, and gelatin derivatives using various UV absorbers that present overlap in UV spectrum with that of the PI UV absorbance spectrum. Moreover, this simple and effective method was used as a universal platform to integrate with other hydrogel-engineering techniques such as photomask-aided microfabrication, photo-patterning, ion-transfer printing, and 3D bioprinting to fabricate more advanced cell-laden scaffold structures. Lastly, proof-of-concept 4D tissue engineering was demonstrated in a study of 4D bone-like tissue formation. The strategy's simplicity along with its versatility paves a new way in solving the hurdle of achieving temporal shape changes in cell-laden single-component hydrogel scaffolds and may expedite the development of 4D biofabricated constructs for biological applications.

Keywords: 4D bioprinting; One-step gradient formation; Photolithography; Shape-morphing hydrogel; Tissue engineering; UV absorber.