Identification of HvLRX, a new dehydration and light responsive gene in Tibetan hulless barley (Hordeum vulgare var. nudum)

Genes Genomics. 2021 Dec;43(12):1445-1461. doi: 10.1007/s13258-021-01147-3. Epub 2021 Sep 3.

Abstract

Background: Tibetan hulless barley (Hordeum vulgare var. nudum), adjusting to the harsh environment on Qinghai-Tibet Plateau, is a good subject for analyzing drought tolerance mechanism. Several unannotated differentially expressed genes (DEGs) were identified through our previous RNA-Seq study using two hulless barley accessions with contrasting drought tolerance. One of these DEGs, HVU010048.2, showed up-regulated pattern under dehydration stress in both drought tolerant (DT) and drought susceptible (DS) accessions, while its function in drought resistance remains unknown. This new gene was named as HvLRX (light responsive X), because its expression was induced under high light intensity while suppressed under dark.

Objective: To provide preliminary bioinformatics prediction, expression pattern, and drought resistance function of this new gene.

Methods: Bioinformatics analysis of HvLRX were conducted by MEGA, PlantCARE, ProtParam, CELLO et al. The expression pattern of HvLRX under different light intensity, dehydration shock, gradual drought stress, NaCl stress, polyethylene glycol (PEG) 6000 stress and abscisic acid (ABA) treatment was investigated by quantitative reverse transcription-polymerase chain reaction (RT-qPCR). The function of HvLRX was analyzed by virus induced gene silencing (VIGS) in hulless barley and by transgenic method in tobacco.

Results: Full cDNAs of HvLRX were cloned and compared in three hulless barley accessions. Homologues of HvLRX protein in other plants were excavated and their phylogenetic relationship was analyzed. Several light responsive elements (ATC-motif, Box 4, G-box, Sp1, and chs-CMA1a) were identified in its promoter region. Its expression can be promoted under high light intensity, dehydration shock, gradual drought stress, PEG 6000, and NaCl stress, but was almost unchanged in ABA treatment. HvLRX-silenced plants had a higher leaf water loss rate (WLR) and a lower survival rate (SR) compared with controls under dehydration stress. The infected leaves of HvLRX-silenced plants lost their water content quickly and became withered at 10 dpi. The SR of HvLRX overexpressed transgenic tobacco plants was significantly higher than that of wild-type plants. These results indicated HvLRX play a role in drought resistance. Besides, retarded vegetative growth was detected in HvLRX-silenced hulless barley plants, which suggested that this gene is important for plant development.

Conclusions: This study provided data of bioinformatics, expression pattern, and function of HvLRX. To our knowledge, this is the first report of this new dehydration and light responsive gene.

Keywords: BSMV; Drought; Light; Tibetan hulless barley (Hordeum vulgare var. nudum); VIGS.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Droughts*
  • Genes, Plant*
  • Hordeum / genetics*
  • Hordeum / metabolism
  • Light
  • Salt Stress*