Abomasal infusion of corn starch and β-hydroxybutyrate in early-lactation Holstein-Friesian dairy cows to induce hindgut and metabolic acidosis

J Dairy Sci. 2021 Dec;104(12):12520-12539. doi: 10.3168/jds.2021-20323. Epub 2021 Sep 3.

Abstract

The objectives of this study were to induce hindgut and metabolic acidosis via abomasal infusion of corn starch and β-hydroxybutyrate (BHB), respectively, and to determine the effects of these physiological states in early-lactation dairy cows. In a 6 × 6 Latin square design, 6 rumen-fistulated Holstein-Friesian dairy cows (66 ± 18 d in milk) were subjected to 5 d of continuous abomasal infusion treatments followed by 2 d of rest. The abomasal infusion treatments followed a 3 × 2 factorial design, with 3 levels of corn starch and 2 levels of BHB. The infusions were water as control, 1.5 kg of corn starch/d, 3.0 kg of corn starch/d, 8.0 mol BHB/d, 1.5 kg of corn starch/d + 8.0 mol BHB/d, or 3.0 kg of corn starch/d + 8.0 mol BHB/d. A total mixed ration consisting of 35.0% grass silage, 37.4% corn silage, and 27.6% concentrate (on a dry matter basis) was fed at 90% of ad libitum intake of individual cows. The experiment was conducted in climate respiration chambers to facilitate determination of energy and N balance. Fecal pH decreased with each level of corn starch infused into the abomasum and was 6.49, 6.00, and 5.15 with 0.0, 1.5, and 3.0 kg of corn starch/d, respectively, suggesting that hindgut acidosis was induced with corn starch infusion. No systemic inflammatory response was observed and the permeability of the intestine or hindgut epithelium was not affected by the more acidic conditions. This induced hindgut acidosis was associated with decreased digestibility of nutrients, except for crude fat and NDF, which were not affected. Induced hindgut acidosis did not affect milk production and composition and energy balance, but increased milk N efficiency. Abomasal infusion of BHB resulted in a compensated metabolic acidosis, which was characterized by a clear disturbance of acid-base status (i.e., decreased blood total CO2, HCO3, and base excess, and a tendency for decreased urinary pH), whereas blood pH remained within a physiologically normal range. Abomasal infusion of BHB resulted in increased concentrations of BHB in milk and plasma, but both remained well below the critical threshold values for subclinical ketosis. Induced compensated metabolic acidosis, as a result of abomasally infused BHB, increased energy retained as body fat, did not affect milk production and composition or inflammatory response, but increased intestinal permeability.

Keywords: dairy cow; early lactation; hindgut acidosis; metabolic acidosis.

MeSH terms

  • 3-Hydroxybutyric Acid
  • Abomasum
  • Acidosis* / veterinary
  • Animals
  • Cattle
  • Cattle Diseases*
  • Diet / veterinary
  • Digestion
  • Lactation
  • Milk
  • Rumen
  • Silage / analysis
  • Starch
  • Zea mays

Substances

  • Starch
  • 3-Hydroxybutyric Acid