Light-Induced GFP Expression in Zebrafish Embryos using the Optogenetic TAEL/C120 System

J Vis Exp. 2021 Aug 19;(174). doi: 10.3791/62818.

Abstract

Inducible gene expression systems are an invaluable tool for studying biological processes. Optogenetic expression systems can provide precise control over gene expression timing, location, and amplitude using light as the inducing agent. In this protocol, an optogenetic expression system is used to achieve light-inducible gene expression in zebrafish embryos. This system relies on an engineered transcription factor called TAEL based on a naturally occurring light-activated transcription factor from the bacterium E. litoralis. When illuminated with blue light, TAEL dimerizes, binds to its cognate regulatory element called C120, and activates transcription. This protocol uses transgenic zebrafish embryos that express the TAEL transcription factor under the control of the ubiquitous ubb promoter. At the same time, the C120 regulatory element drives the expression of a fluorescent reporter gene (GFP). Using a simple LED panel to deliver activating blue light, induction of GFP expression can first be detected after 30 min of illumination and reaches a peak of more than 130-fold induction after 3 h of light treatment. Expression induction can be assessed by quantitative real-time PCR (qRT-PCR) and by fluorescence microscopy. This method is a versatile and easy-to-use approach for optogenetic gene expression.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Video-Audio Media

MeSH terms

  • Animals
  • Animals, Genetically Modified
  • Genes, Reporter
  • Green Fluorescent Proteins / genetics
  • Optogenetics*
  • Zebrafish* / genetics

Substances

  • Green Fluorescent Proteins