Effects of pressure and strain on physical properties of VI3

J Phys Condens Matter. 2021 Sep 21;33(48). doi: 10.1088/1361-648X/ac23fc.

Abstract

The van der Waals ferromagnetic material VI3is a magnetic Mott insulator. In this work, we investigate the effects of isotropic and anisotropic pressure on the atomic structure and the electronic structure of VI3using the first-principles method. The in-plane strain induces structural distortion and breaks the three-fold rotational symmetry of the lattice. Both the in-plane and out-of-plane strain widen the conduction and the valence bands, reduce the energy band gap and drive VI3from a semiconductor to a three-dimensional metal. The structural distortion is not the cause of insulator-to-metal transition. Calculations of the magnetocrystalline anisotropy energy indicate an easy-axis to easy-plane transition when the pressure is higher than 2 GPa. The ferromagnetic Curie temperature falls from 63 K at 0 GPa to 25 K at 6 GPa.

Keywords: ferromagnetism; first-principles calculation; insulator-to-metal transition; strain engineering.