Broadband and pixelated camouflage in inflating chiral nematic liquid crystalline elastomers

Nat Mater. 2022 Jan;21(1):41-46. doi: 10.1038/s41563-021-01075-3. Epub 2021 Sep 6.

Abstract

Living organisms such as fishes1, cephalopods2 and clams3 are cryptically coloured with a wide range of hues and patterns for camouflage, signalling or energy regulation. Despite extensive efforts to create colour-changing materials and devices4, it is challenging to achieve pixelated structural coloration with broadband spectral shifts in a compact space. Here, we describe pneumatically inflating thin membranes of main-chain chiral nematic liquid crystalline elastomers that have such properties. By taking advantage of the large elasticity anisotropy and Poisson's ratio (>0.5) of these materials, we geometrically program the size and the layout of the encapsulated air channels to achieve colour shifting from near-infrared to ultraviolet wavelengths with less than 20% equi-biaxial transverse strain. Each channel can be individually controlled as a colour 'pixel' to match with surroundings, whether periodically or irregularly patterned. These soft materials may find uses in distinct applications such as cryptography, adaptive optics and soft robotics.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Anisotropy
  • Elasticity
  • Elastomers* / chemistry
  • Liquid Crystals* / chemistry
  • Optics and Photonics

Substances

  • Elastomers