Autophagy Dysfunction as a Phenotypic Readout in hiPSC-Derived Neuronal Cell Models of Neurodegenerative Diseases

Methods Mol Biol. 2022:2549:103-136. doi: 10.1007/7651_2021_420.


Autophagy is an evolutionarily conserved catabolic pathway for the degradation of cytoplasmic constituents in eukaryotic cells. It is the primary disposal route for selective removal of undesirable cellular materials like aggregation-prone proteins and damaged organelles for maintaining cellular homeostasis, and for bulk degradation of intracellular macromolecules and recycling the breakdown products for providing energy homeostasis during starvation. These functions of autophagy are attributed to cellular survival and thus pertinent for human health; however, malfunction of this process is detrimental to the cells, particularly for post-mitotic neurons. Thus, basal autophagy is vital for maintaining neuronal homeostasis, whereas autophagy dysfunction contributes to neurodegeneration. Defective autophagy has been demonstrated in several neurodegenerative diseases wherein pharmacological induction of autophagy is beneficial in many of these disease models. Elucidating the mechanisms underlying defective autophagy is imperative for the development of therapies targeting this process. Disease-affected human neuronal cells can be established from patient-derived human induced pluripotent stem cells (hiPSCs) that provide a clinically relevant platform for studying disease mechanisms and drug discovery. Thus, modeling autophagy dysfunction as a phenotypic readout in patient-derived neurons provides a more direct platform for investigating the mechanisms underlying defective autophagy and evaluating the therapeutic efficacy of autophagy inducers. Toward this, several hiPSC-derived neuronal cell models of neurodegenerative diseases have been employed. In this review, we highlight the key methodologies pertaining to hiPSC maintenance and neuronal differentiation, and studying autophagy at an endogenous level in hiPSC-derived neuronal cells.

Keywords: Autophagosome; Autophagy; Autophagy dysfunction; Autophagy inducer; Autophagy substrate; Human induced pluripotent stem cells; LC3; Neurodegenerative disease; Neuronal differentiation; hiPSC-derived neurons; p62.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Autophagy
  • Homeostasis
  • Humans
  • Induced Pluripotent Stem Cells* / metabolism
  • Neurodegenerative Diseases* / metabolism
  • Neurons / metabolism