The SFRP1 Inhibitor WAY-316606 Attenuates Osteoclastogenesis Through Dual Modulation of Canonical Wnt Signaling

J Bone Miner Res. 2022 Jan;37(1):152-166. doi: 10.1002/jbmr.4435. Epub 2021 Sep 24.

Abstract

Osteoporosis, a noteworthy age-related disease induced by imbalanced osteogenesis and osteoclastogenesis, is a serious economic burden on both individuals and society. Small molecule drugs with dual effects on both bone resorption and mineralization are pressingly needed. Secreted frizzled-related protein 1 (SFRP1), a well-known extracellular repressor of canonical Wnt signaling, has been reported to regulate osteogenesis. Global SFRP1 knockout mice show significantly elevated bone mass. Although osteoclasts (OCs) express and secrete SFRP1, the role of SFRP1 produced by OCs in osteoclastogenesis and osteoporosis remains unclear. In this work, the levels of SFRP1 were found to be increased in patients with osteoporosis compared with healthy controls. Pharmacological inhibition of SFRP1 by WAY-316606 (WAY)- attenuated osteoclastogenesis and bone resorption in vitro. The expressions of OC-specific genes were suppressed by the SFRP1 inhibitor, WAY. Mechanistically, both extracellular and intracellular SFRP1 could block activation of the canonical Wnt signaling pathway, and WAY reverse the silent status of canonical Wnt through dual effects, leading to osteoclastogenesis inhibition and osteogenesis promotion. Severe osteopenia was observed in the ovariectomized (OVX) mouse model, and WAY treatment effectively improved the OVX-induced osteoporosis. In summary, this work found that SFRP1 supports OC differentiation and function, which could be attenuated by WAY through dual modulation of canonical Wnt signaling, suggesting its therapeutic potential. © 2021 American Society for Bone and Mineral Research (ASBMR).

Keywords: OSTEOCLAST; OSTEOPOROSIS; WAY-316606; WNT SIGNALING; secreted frizzled-related protein 1 (SFRP1.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Differentiation
  • Humans
  • Intercellular Signaling Peptides and Proteins / metabolism
  • Membrane Proteins / antagonists & inhibitors
  • Membrane Proteins / metabolism
  • Mice
  • Osteoclasts / cytology*
  • Osteogenesis*
  • Osteoporosis
  • Wnt Signaling Pathway* / drug effects

Substances

  • Intercellular Signaling Peptides and Proteins
  • Membrane Proteins
  • SFRP1 protein, human
  • Sfrp1 protein, mouse