The design, synthesis, and crystallization of an alpha-helical peptide

Proteins. 1986 Sep;1(1):16-22. doi: 10.1002/prot.340010105.


Twelve- and sixteen-residue peptides have been designed to form tetrameric alpha-helical bundles. Both peptides are capable of folding into amphiphilic alpha-helices, with leucyl residues along one face and glutamyl and lysyl residues along the opposite face. Four such amphiphilic alpha-helices are capable of forming a noncovalently bonded tetramer. Neighboring helices run in antiparallel directions in the design, so that the complex has 222 symmetry. In the designed tetramer, the leucyl side chains interdigitate in the center in a hydrophobic interaction, and charged side chains are exposed to the solvent. The designed 12-mer (ALPHA-1) has been synthesized, and it forms helical aggregates in aqueous solution as judged by circular dichroic spectroscopy. It has also been crystallized and characterized by x-ray diffraction. The crystal symmetry is compatible with (but does not prove) the design. The design can be extended to a four-alpha-helical bundle formed from a single polypeptide by adding three peptide linkers.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Crystallization
  • Molecular Sequence Data
  • Peptides / chemical synthesis*
  • Protein Conformation


  • Peptides