Misic, a general deep learning-based method for the high-throughput cell segmentation of complex bacterial communities
- PMID: 34498586
- PMCID: PMC8478410
- DOI: 10.7554/eLife.65151
Misic, a general deep learning-based method for the high-throughput cell segmentation of complex bacterial communities
Abstract
Studies of bacterial communities, biofilms and microbiomes, are multiplying due to their impact on health and ecology. Live imaging of microbial communities requires new tools for the robust identification of bacterial cells in dense and often inter-species populations, sometimes over very large scales. Here, we developed MiSiC, a general deep-learning-based 2D segmentation method that automatically segments single bacteria in complex images of interacting bacterial communities with very little parameter adjustment, independent of the microscopy settings and imaging modality. Using a bacterial predator-prey interaction model, we demonstrate that MiSiC enables the analysis of interspecies interactions, resolving processes at subcellular scales and discriminating between species in millimeter size datasets. The simple implementation of MiSiC and the relatively low need in computing power make its use broadly accessible to fields interested in bacterial interactions and cell biology.
Keywords: B. subtilis; Deep learning; E. coli; biofilms; computational biology; image analysis; infectious disease; microbiology; microscopy; myxococcus xanthus; systems biology.
© 2021, Panigrahi et al.
Conflict of interest statement
SP, DM, AL, EM, KG, JF, SR, MN, LE No competing interests declared, TM Reviewing editor, eLife
Figures
Similar articles
-
Non-invasive single-cell morphometry in living bacterial biofilms.Nat Commun. 2020 Dec 1;11(1):6151. doi: 10.1038/s41467-020-19866-8. Nat Commun. 2020. PMID: 33262347 Free PMC article.
-
Community-wide changes reflecting bacterial interspecific interactions in multispecies biofilms.Crit Rev Microbiol. 2021 May;47(3):338-358. doi: 10.1080/1040841X.2021.1887079. Epub 2021 Mar 2. Crit Rev Microbiol. 2021. PMID: 33651958 Review.
-
Lysinibacillus fusiformis M5 Induces Increased Complexity in Bacillus subtilis 168 Colony Biofilms via Hypoxanthine.J Bacteriol. 2017 Oct 17;199(22):e00204-17. doi: 10.1128/JB.00204-17. Print 2017 Nov 15. J Bacteriol. 2017. PMID: 28583948 Free PMC article.
-
Colony analysis and deep learning uncover 5-hydroxyindole as an inhibitor of gliding motility and iridescence in Cellulophaga lytica.Microbiology (Reading). 2018 Mar;164(3):308-321. doi: 10.1099/mic.0.000617. Epub 2018 Feb 5. Microbiology (Reading). 2018. PMID: 29458680
-
Spatial structure, cooperation and competition in biofilms.Nat Rev Microbiol. 2016 Sep;14(9):589-600. doi: 10.1038/nrmicro.2016.84. Epub 2016 Jul 25. Nat Rev Microbiol. 2016. PMID: 27452230 Review.
Cited by
-
High content quantitative imaging of Mycobacterium tuberculosis responses to acidic microenvironments within human macrophages.FEBS Open Bio. 2023 Jul;13(7):1204-1217. doi: 10.1002/2211-5463.13537. Epub 2023 Jan 10. FEBS Open Bio. 2023. PMID: 36520007 Free PMC article.
-
A Tad-like apparatus is required for contact-dependent prey killing in predatory social bacteria.Elife. 2021 Sep 10;10:e72409. doi: 10.7554/eLife.72409. Elife. 2021. PMID: 34505573 Free PMC article.
-
Tools and methods for high-throughput single-cell imaging with the mother machine.Elife. 2024 Apr 18;12:RP88463. doi: 10.7554/eLife.88463. Elife. 2024. PMID: 38634855 Free PMC article.
-
DeepBacs for multi-task bacterial image analysis using open-source deep learning approaches.Commun Biol. 2022 Jul 9;5(1):688. doi: 10.1038/s42003-022-03634-z. Commun Biol. 2022. PMID: 35810255 Free PMC article.
-
Multi-scale dynamic imaging reveals that cooperative motility behaviors promote efficient predation in bacteria.Nat Commun. 2023 Sep 11;14(1):5588. doi: 10.1038/s41467-023-41193-x. Nat Commun. 2023. PMID: 37696789 Free PMC article.
References
-
- Bustamante VH, Martínez-Flores I, Vlamakis HC, Zusman DR. Analysis of the Frz signal transduction system of Myxococcus xanthus shows the importance of the conserved c-terminal region of the cytoplasmic chemoreceptor FRZCD in sensing signals. Molecular Microbiology. 2004;53:1501–1513. doi: 10.1111/j.1365-2958.2004.04221.x. - DOI - PubMed
-
- Espinosa L. MiSiCgui. swh:1:rev:97401bedd44aa7b28d22f8cf87e76b521f15f40aSoftware Heritage. 2021 https://archive.softwareheritage.org/swh:1:dir:3a84dbf0d149b04b5b056187c...
-
- Falk T, Mai D, Bensch R, Çiçek Ö, Abdulkadir A, Marrakchi Y, Böhm A, Deubner J, Jäckel Z, Seiwald K, Dovzhenko A, Tietz O, Dal Bosco C, Walsh S, Saltukoglu D, Tay TL, Prinz M, Palme K, Simons M, Diester I, Brox T, Ronneberger O. U-net: Deep learning for cell counting, detection, and morphometry. Nature Methods. 2019;16:67–70. doi: 10.1038/s41592-018-0261-2. - DOI - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
