The adipocyte-derived 'satiety promoting' hormone, leptin, has been identified as a key central regulator of body weight and fertility, such that its absence leads to obesity and infertility. Plasma leptin levels reflect body adiposity, and therefore act as an 'adipostat', whereby low leptin levels reflect a state of low body adiposity (under-nutrition/starvation) and elevated leptin levels reflect a state of high body adiposity (over-nutrition/obesity). While genetic leptin deficiency is rare, obesity-related leptin resistance is becoming increasingly common. In the absence of adequate leptin sensitivity, leptin is unable to exert its 'anti-obesity' effects, thereby exacerbating obesity. Furthermore, extreme leptin resistance and consequent low or absent leptin signalling resembles a state of starvation and can thus lead to infertility. However, leptin resistance occurs on a spectrum, and it is possible to be resistant to leptin's metabolic effects while retaining leptin's permissive effects on fertility. This may be because leptin exerts its modulatory effects on energy homeostasis and reproductive function through discrete intracellular signalling pathways, and these pathways are differentially affected by the molecules that promote leptin resistance. This review discusses the potential mechanisms that enable leptin to exert differential control over metabolic and reproductive function in the contexts of healthy leptin signalling and of diet-induced leptin resistance.
Keywords: Akt; CRTC; PI3K; STAT3; fertility; leptin; leptin resistance; metabolism; signalling pathways.