Association between the expression of lncRNA BASP-AS1 and volume of right hippocampal tail moderated by episode duration in major depressive disorder: a CAN-BIND 1 report

Transl Psychiatry. 2021 Sep 8;11(1):469. doi: 10.1038/s41398-021-01592-4.

Abstract

The pathophysiology of major depressive disorder (MDD) encompasses an array of changes at molecular and neurobiological levels. As chronic stress promotes neurotoxicity there are alterations in the expression of genes and gene-regulatory molecules. The hippocampus is particularly sensitive to the effects of stress and its posterior volumes can deliver clinically valuable information about the outcomes of antidepressant treatment. In the present work, we analyzed individuals with MDD (N = 201) and healthy controls (HC = 104), as part of the CAN-BIND-1 study. We used magnetic resonance imaging (MRI) to measure hippocampal volumes, evaluated gene expression with RNA sequencing, and assessed DNA methylation with the (Infinium MethylationEpic Beadchip), in order to investigate the association between hippocampal volume and both RNA expression and DNA methylation. We identified 60 RNAs which were differentially expressed between groups. Of these, 21 displayed differential methylation, and seven displayed a correlation between methylation and expression. We found a negative association between expression of Brain Abundant Membrane Attached Signal Protein 1 antisense 1 RNA (BASP1-AS1) and right hippocampal tail volume in the MDD group (β = -0.218, p = 0.021). There was a moderating effect of the duration of the current episode on the association between the expression of BASP1-AS1 and right hippocampal tail volume in the MDD group (β = -0.48, 95% C.I. [-0.80, -0.16]. t = -2.95 p = 0.004). In conclusion, we found that overexpression of BASP1-AS1 was correlated with DNA methylation, and was negatively associated with right tail hippocampal volume in MDD.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • DNA Methylation
  • Depressive Disorder, Major* / genetics
  • Hippocampus
  • Humans
  • Magnetic Resonance Imaging
  • RNA, Long Noncoding*

Substances

  • RNA, Long Noncoding