Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 May;11(3):477-489.
doi: 10.34172/apb.2021.055. Epub 2020 Jul 1.

Novel Methotrexate-Ciprofloxacin Loaded Alginate-Clay Based Nanocomposite as Anticancer and Antibacterial Co-Drug Delivery System

Affiliations

Novel Methotrexate-Ciprofloxacin Loaded Alginate-Clay Based Nanocomposite as Anticancer and Antibacterial Co-Drug Delivery System

Mehrdad Mahkam et al. Adv Pharm Bull. 2021 May.

Abstract

Purpose: In last decades, by increasing multi-drug resistant microbial pathogens an urgent demand was felt in the development of novel antimicrobial agents. Methods: Promising nanocomposites composed of clay/alginate/imidazolium-based ionic liquid, have been developed via intercalation of calcium alginate and ionic liquid by ion exchange method. These tailored nanocomposites were used as nanocarriers to simultaneously deliver methotrexate (MTX), and ciprofloxacin (CIP), as anticancer and antibacterial agents, respectively to MCF-7 breast cancer cells. Nanocomposites were fully characterized by scanning electron microscopy studies (SEM), X-ray diffraction (XRD), Fourier transforms infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA) methods. The in vitro antimicrobial potential of the mentioned nanocomposites in free and dual-drug loaded form was investigated on Pseudomonas aeruginosa and Escherichia coli bacteria. The antitumor activity of nano-formulations was evaluated by both MTT assay and cell cycle arrest. Results: The dual drug-loaded nanocomposites with exceptionally high loading efficiency (MTX: 99 ±0.4% and CIP: 98 ±1.2%) and mean particle size of 70 nm were obtained with obvious pH-responsive MTX and CIP release (both drugs release rate was increased at pH 5.8 compared to 7.4). The antibacterial activity of CIP-loaded nanocomposites was significantly higher in comparison with free CIP (P <0.001). The antitumor activity results revealed that MTX cytotoxicity on MCF-7 cells was significantly higher in nano-formulations compared to free MTX (P <0.001). Both MTX-loaded nanocomposites caused S-phase arrest in MCF-7 cells compared to non-treated cells (P ˂ 0.001). Conclusion: Newly developed smart nanocomposites are potentially effective pH-sustainable delivery systems for enhanced tumor therapy.

Keywords: Alginate; Antibacterial activity; Cancer therapy; Drug delivery system; Nanoclay; PH-sensitive nanocomposite.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Figure 2
Figure 2
Figure 3
Figure 3
Figure 4
Figure 4
Figure 5
Figure 5
Figure 6
Figure 6
Figure 7
Figure 7
Figure 8
Figure 8
Figure 9
Figure 9

Similar articles

Cited by

References

    1. Sanna V, Pala N, Sechi M. Targeted therapy using nanotechnology: focus on cancer. Int J Nanomedicine. 2014;9:467–83. doi: 10.2147/ijn.s36654. - DOI - PMC - PubMed
    1. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–51. doi: 10.1038/nbt.3330. - DOI - PMC - PubMed
    1. Nel A, Ruoslahti E, Meng H. New insights into “permeability” as in the enhanced permeability and retention effect of cancer nanotherapeutics. ACS Nano. 2017;11(10):9567–9. doi: 10.1021/acsnano.7b07214. - DOI - PubMed
    1. Aryal S, Grailer JJ, Pilla S, Steeber DA, Gong S. Doxorubicin conjugated gold nanoparticles as water-soluble and pH-responsive anticancer drug nanocarriers. J Mater Chem. 2009;19(42):7879–84. doi: 10.1039/b914071a. - DOI
    1. Rivera E, Gomez H. Chemotherapy resistance in metastatic breast cancer: the evolving role of ixabepilone. Breast Cancer Res. 2010;12 Suppl 2:S2. doi: 10.1186/bcr2573. - DOI - PMC - PubMed

LinkOut - more resources