900 MHz Radiofrequency Field Induces Mitochondrial Unfolded Protein Response in Mouse Bone Marrow Stem Cells

Front Public Health. 2021 Aug 26:9:724239. doi: 10.3389/fpubh.2021.724239. eCollection 2021.

Abstract

Objective: To examine whether exposure of mouse bone marrow stromal cells (BMSC) to 900 MHz radiofrequency fields used in mobile communication devices can induce mitochondrial unfolded protein response (UPRmt). Methods: BMSCs were exposed to continuous wave 900 MHz radiofrequency fields (RF) at 120 μW/cm2 power intensity for 4 h/d for 5 consecutive days. Cells in sham group (SH) were cultured in RF exposure system, but without RF radiation. The positive control cells were irradiated with 6 Gy X-ray at a dose rate of 1.103 Gy/min (XR). To inhibit the upstream molecular JNK2 of UPRmt, cells in siRNA + RF, and siRNA + XR group were also pretreated with 100 nM siRNA-JNK2 for 48 h before RF/XR exposure. Thirty minutes, 4 h, and 24 h post-RF/XR exposure, cells were collected, the level of ROS was measured with flow cytometry, the expression levels of UPRmt-related proteins were detected using western blot analysis. Results: Compared with Sham group, the level of ROS in RF and XR group was significantly increased 30 min and 4 h post-RF/XR exposure (P < 0.05), however, the RF/XR-induced increase of ROS level reversed 24 h post-RF/XR exposure. Compared with Sham group, the expression levels of HSP10/HSP60/ClpP proteins in cells of RF and XR group increased significantly 30 min and 4 h post-RF/XR exposure (P < 0.05), however, the RF/XR-induced increase of HSP10/HSP60/ClpP protein levels reversed 24 h post-RF exposure. After interfering with siRNA-JNK2, the RF/XR exposures could not induce the increase of HSP10/HSP60/ClpP protein levels any more. Conclusions: The exposure of 900 MHz RF at 120 μW/cm2 power flux density could increase ROS level and activate a transient UPRmt in BMSC cells. Mitochondrial homeostasis in term of protein folding ability is restored 24 h post-RF exposure. Exposure to RF in our experimental condition did not cause permanent and severe mitochondrial dysfunctions. However, the detailed underlying molecular mechanism of RF-induced UPRmt remains to be further studied.

Keywords: heat shock protein; microwave; mitochondria; radiofrequency fields; reactive oxygen species; unfolded protein response.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bone Marrow Cells
  • Mesenchymal Stem Cells*
  • Mice
  • Radio Waves* / adverse effects
  • Unfolded Protein Response