Slaughterhouse wastewater as a reservoir for extended-spectrum β-lactamase (ESBL)-producing, and colistin-resistant Klebsiella spp. and their impact in a "One Health" perspective

Sci Total Environ. 2021 Aug 30;804:150000. doi: 10.1016/j.scitotenv.2021.150000. Online ahead of print.


Klebsiella spp. are ubiquitous bacteria capable of colonizing humans and animals, and sometimes leading to severe infections in both. Due to their high adaptability against environmental/synthetic conditions as well as their potential in aquiring antimicrobial/metal/biocide resistance determinants, Klebsiella spp. are recognized as an emerging threat to public health, worldwide. Currently, scarce information on the impact of livestock for the spread of pathogenic Klebsiella spp. is available. Thus, the phenotypic and genotypic properties of extended-spectrum β-lactamase-producing, and colistin-resistant Klebsiella strains (n = 185) from process- and wastewater of two poultry and pig slaughterhouses as well as their receiving municipal wastewater treatment plants (mWWTPs) were studied to determine the diversity of isolates that might be introduced into the food-production chain or that are released into the environment by surviving the wastewater treatment. Selectively-isolated Klebsiella spp. from slaughterhouses including effluents and receiving waterbodies of mWWTPs were assigned to various lineages, including high-risk clones involved in human outbreaks, and exhibited highly heterogeneous antibiotic-resistance patterns. While isolates originating from poultry slaughterhouses showed the highest rate of colistin resistance (32.4%, 23/71), carbapenem-resistant Klebsiella spp. were only detected in mWWTP samples (n = 76). The highest diversity of resistance genes (n = 77) was detected in Klebsiella spp. from mWWTPs, followed by isolates from pig (n = 56) and poultry slaughterhouses (n = 52). Interestingly, no carbapenemase-encoding genes were detected and mobile colistin resistance genes were only obeserved in isolates from poultry and pig slaughterhouses. Our study provides in-depth information into the clonality of livestock-associated Klebsiella spp. and their determinants involved in antimicrobial resistance and virulence development. On the basis of their pathogenic potential and clinical importance there is a potential risk of colonization and/or infection of wildlife, livestock and humans exposed to contaminated food and/or surface waters.

Keywords: Antimicrobial resistance; Klebsiella oxytoca; Klebsiella pneumoniae; Slaughterhouse; Virulence; Wastewater.