Life cycle carbon emissions of different land conversion and woody biomass utilization scenarios in Indonesia

Sci Total Environ. 2022 Jan 20:805:150226. doi: 10.1016/j.scitotenv.2021.150226. Epub 2021 Sep 10.

Abstract

Wood-based products can contribute to climate change mitigation by prolonging the storage of carbon in the anthroposphere. In Indonesia, however, many wood-based products originate from unsustainable sources due to widespread land-use changes over the past decades. To reconcile economic development and climate policy, a detailed and comprehensive carbon life cycle assessment is needed, covering biospheric and technospheric woody carbon flows and emissions over time. In this study, we combine dynamic material flow analysis, stock modeling, and life cycle assessment to estimate life cycle carbon emissions over time of wood products from different land conversion types in Indonesia on a hectare (ha) basis. Wood production from clear-cut primary forest conversions to oil palm, secondary forest, and timber plantations lead to net carbon emissions between 1206-1282, 436-449, and 629-958 t-CO2-eq/ha, respectively, at the end of the 200-year time horizon (TH). The counter-use scenarios of using non-renewable materials or energy instead of wood-based products for the same set of scenarios while leaving primary forests untouched display 44-57, 59-88, and 5-48% lower global warming potentials, respectively, at the end of the TH. Wood products from forest plantations on restored degraded land (DL_FP), reduced-impact logging (RIL), and improved reduced-impact logging (RIL-C) of primary forest went beyond carbon neutrality, displaying carbon removal potentials of up to around -218, -378, and -739 t-CO2-eq/ha, respectively, by year 200. At the one ha-scale, our results indicate that keeping primary forests intact is the climate-preferable option, even when emissions from the counter-use of non-renewable materials or energy are factored in, except if RIL is performed. Therefore, wood product utilization would only be favorable from a climate perspective in DL_FP or RIL pathways. These results help screen different land conversion policy options and providing information about the climate mitigation potential of wood products in different supply chains.

Keywords: Carbon storage; Climate mitigation; Dynamic life cycle assessment; Dynamic material flow analysis; Land-use strategies; Wood products.

MeSH terms

  • Animals
  • Biomass
  • Carbon Cycle
  • Carbon*
  • Forests
  • Indonesia
  • Life Cycle Stages
  • Wood*

Substances

  • Carbon