Design, production, and validation of the biological and structural performance of an ecologically engineered concrete block mattress: A Nature-Inclusive Design for shoreline and offshore construction

Integr Environ Assess Manag. 2022 Jan;18(1):148-162. doi: 10.1002/ieam.4523. Epub 2021 Oct 21.

Abstract

Over the past decade, the scientific community has studied, experimented, and published a notable body of literature on the ecological enhancement of coastal and marine infrastructure (CMI). The Nature-Inclusive Design (NID) approach refers to methods and technologies that can be integrated into the design and construction of CMI to create a suitable habitat for native species (or communities) whose natural habitat has been degraded or reduced. To examine the compliance of new environmentally sensitive technologies with structural requirements and fiscal restraints, while providing ecosystem and habitat value, this paper presents the findings of a structural-economical-biological analysis of ecologically engineered Articulated Concrete Block Mattresses (ACBMs). To evaluate the structural and biological performance of the Ecological Articulated Concrete Block Mattresses, a pilot project was deployed in April 2017 at Port Everglades, Florida, USA, and evaluated against controls of adjacent artificial structures and smooth-surface concrete blocks and monitored over a period of two years. The elements of ecological enhancement implemented in the fabrication and design of the ecologically enhanced ACBMs were comprised of bio-enhancing concrete additives and science-based designs. Based on the results of this study, these design alterations have increased the richness and diversity of sessile assemblages compared to control blocks and adjacent artificial structures and supported a higher abundance of mobile species. This ecological improvement was achieved within the operational limitations of conventional manufacturing and installation technologies, while complying with strict structural requirements for standard concrete marine construction. The results supported the working hypothesis and demonstrated that modifications of concrete composition, surface texture, and macro-design have the potential to increase the ecological value of concrete-based CMI and promote a more sustainable and adaptive approach to coastal and marine development in an era of climate resilience-building. Integr Environ Assess Manag 2022;18:148-162. © 2021 SETAC.

Keywords: Articulated Concrete Block Mattress; Bio-enhancing concrete; Carbon sink; Ecological engineering; Shoreline erosion.

MeSH terms

  • Beds*
  • Ecosystem*
  • Florida
  • Pilot Projects