Metal-Organic Frameworks for Ammonia-Based Thermal Energy Storage

Small. 2021 Nov;17(44):e2102689. doi: 10.1002/smll.202102689. Epub 2021 Sep 22.

Abstract

Recently, the application of metal-organic frameworks (MOFs) in thermal energy storage has attracted increasing research interests. MOF-ammonia working pairs have been proposed for controlling/sensing the air quality, while no work has yet been reported on the immense potential of MOFs for thermal energy storage up till now. Herein, the feasibility of thermal energy storage using seven MOF-ammonia working pairs is experimentally assessed. From ammonia sorption stability and sorption thermodynamics results, it is found that MIL-101(Cr) exhibits both high ammonia sorption stability and the largest sorption capacity of ≈0.76 g g-1 . Compared with MIL-101(Cr)-water working pair, MIL-101(Cr)-ammonia working pair improves the sorption capacity by over three times with evaporation temperature lower than 8.4 °C. Due to stable ammonia sorption stability and negligible hysteresis, MIL-101(Cr) and ZIF-8(Zn) are tested at condensation/evaporation temperature of 30 °C/10 °C. The thermal energy storage density (reaching over 1200 kJ kg-1 ) and coefficient of performance of MIL-101(Cr)-based system are both higher than ZIF-8(Zn)-based one due to larger average isosteric enthalpy and cycle sorption capacity. This experimental work paves the way for developing the high efficient and stable thermal energy storage system with MOF-ammonia working pairs especially for critical conditions with low evaporation temperature and high condensation temperature.

Keywords: ammonia; metal-organic frameworks; stability; thermal energy storage.